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Abstract

In this paper, we construct two classes of Hamiltonian-preserving numerical schemes for a Liouville equation with dis-
continuous local wave speed. This equation arises in the phase space description of geometrical optics, and has been the
foundation of the recently developed level set methods for multivalued solution in geometrical optics. We extend our pre-
vious work in [S. Jin, X. Wen, Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials,
Commun. Math. Sci. 3 (2005) 285–315] for the semiclassical limit of the Schrödinger equation into this system. The design-
ing principle of the Hamiltonian preservation by building in the particle behavior at the interface into the numerical flux is
used here, and as a consequence we obtain two classes of schemes that allow a hyperbolic stability condition. When a plane
wave hits a flat interface, the Hamiltonian preservation is shown to be equivalent to Snell�s law of refraction in the case
when the ratio of wave length over the width of the interface goes to zero, when both length scales go to zero. Positivity,
and stabilities in both l1 and l1 norms, are established for both schemes. The approach also provides a selection criterion
for a unique solution of the underlying linear hyperbolic equation with singular (discontinuous and measure-valued) coef-
ficients. Benchmark numerical examples are given, with analytic solution constructed, to study the numerical accuracy of
these schemes.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we construct and study numerical schemes for the Liouville equation in d-dimension:
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where the Hamiltonian H is given by
Hðx; v; tÞ ¼ cðxÞjvj ¼ cðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2 þ � � � þ v2

d

q
ð1:2Þ
with c(x) > 0 being the local wave speed. f(t,x,v) is the density distribution of particles depending on position
x, time t and the slowness vector v. In this paper, we are interested in the case when c(x) contains discontinu-

ities corresponding to different indices of refraction at different media. This discontinuity will generate an
interface at the point of discontinuity of c(x), and as a consequence waves crossing this interface will undergo
transmissions and reflections. The incident and transmitted waves obey Snell�s law of refraction.

The bicharacteristics of the Liouville equation (1.1) satisfy the Hamiltonian system:
dx

dt
¼ cðxÞ v

jvj ;
dv

dt
¼ �jvjrxc. ð1:3Þ
In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along particle trajectory, even
across an interface.

This Liouville equation arises in the phase space description of geometrical optics. It is the high frequency
limit of the wave equation
utt � cðxÞ2Du ¼ 0; t > 0; x 2 Rd . ð1:4Þ

Recently, several phase space based level set methods are based on this equation, see [13,16,22,31]. High fre-
quency limit of wave equations with transmissions and reflections at the interfaces was studied in [1,30,39]. A
Liouville equation based level set method for the wave front, but with only reflection, was introduced in [7]. It
was also suggested to smooth out the local wave speed in [31].

The Liouville equation (1.1) is a linear wave equation, with the characteristic speed determined by bichar-
acteristic (1.3). If c(x) is smooth, then the standard numerical methods (for example, the upwind scheme and
its higher order extensions) for linear wave equations give satisfactory results. However, if c(x) is discontinu-
ous, then the conventional numerical schemes suffer from two problems. Firstly, the characteristic speed cx of
the Liouville equation is infinity at the discontinuous point of wave speed. When numerically approximating cx

crossing the interface (for example by smoothing out c(x) [31]), the numerical derivative of c is of O(1/Dx),
with Dx the mesh size in the physical space. Thus an explicit scheme needs time step Dt = O(DxDv) with Dv

the mesh size in particle slowness space. This is very expensive. Moreover, a conventional numerical scheme
in general does not preserve a constant Hamiltonian across the interface, usually leading to poor or even incor-
rect numerical resolutions by ignoring the discontinuities of c(x). Theoretically, there is a uniqueness issue for
weak solutions to these linear hyperbolic equations with singular wave speeds [6,9,19,34,35]. It is not clear
which weak solution a standard numerical discretization that ignores the discontinuity of c(x) will select.

We also remark that Hamiltonian or sympletic schemes have been introduced for Hamiltonian ODEs and
PDEs in order to preserve the Hamiltonian or sympletic structures, see for example [15,28]. To our knowledge,
no such schemes have been constructed for Hamiltonian systems with discontinuous Hamiltonians.

In this paper, we construct a class of numerical schemes that are suitable for the Liouville equation (1.1)
with a discontinuous local wave speed c(x). An important feature of our schemes is that they are consistent
with the constant Hamiltonian across the interface. This gives a selection criterion for a unique solution to
the governing equation. As done in [24] for the Liouville equation for the semiclassical limit of the linear
Schrödinger equation, we call such schemes Hamiltonian-preserving schemes. A key idea of these schemes is
to build the behavior of a particle at the interface – either cross over with a changed velocity or be reflected
with a negative velocity – into the numerical flux. This idea was formerly used by Perthame and Semioni in
their work [33] to construct a well-balanced kinetic scheme for the shallow water equations with a (discontin-
uous) bottom topography which can capture the steady state solutions – corresponding to a constant energy –
of the shallow water equations when the water velocity is zero. As a consequence, these new schemes allow a
typical hyperbolic stability condition Dt = O(Dx,Dv).

We extend both classes of the Hamiltonian-preserving schemes developed in [24] here. One (called Scheme

I) is based on a finite difference approach, and involves interpolation in the slowness space. The second (called
Scheme II) uses a finite volume approach, and numerical quadrature rule in the slowness space is needed.
These new schemes allow a typical hyperbolic stability condition Dt = O(Dx,Dv). We will also establish the
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positivity and stability theory for both schemes. It is proved that Scheme I is positive, l1 contracting, and l1

stable under a hyperbolic stability condition, while Scheme II is positive, l1 stable and l1 contracting under the
same stability condition.

By building in the wave behavior at the interface, we have also provided a selection principle to pick up a
unique solution to this linear hyperbolic equation with singular coefficients. For a plane wave hitting a flat
interface, we show that it selects the solution that describes the interface condition in geometrical optics gov-
erned by Snell�s law of refraction when the wave length is much shorter than the width of the interface while
both lengths go to zero.

In geometrical optics applications, one has to solve the Liouville equation like (1.1) with measure-valued

initial data
f ðx; v; 0Þ ¼ q0ðxÞdðv� u0ðxÞÞ; ð1:5Þ

see for example [12,22,38]. The solution at later time remains measure-valued (with finite or even infinite num-
ber of concentrations – corresponding to multivalued solutions in the physical space). Computation of multi-
valued solutions in geometrical optics and more generally in nonlinear PDEs has been a very active area of
recent research, see [2–5,8,10,11,13,14,16–18,20,23,31,37,41].

Numerical methods for the Liouville equation with measure-valued initial data (1.5) could easily suffer from
poor resolution due to the numerical approximation of the initial data as well as numerical dissipation. The
level set method proposed in [21,22] decomposes f into / and wi (i = 1, . . .,d) where / and wi solve the same
Liouville equation with initial data
/ðx; v; 0Þ ¼ q0ðxÞ; wiðx; v; 0Þ ¼ vi � ui0ðxÞ; ð1:6Þ

respectively. (We remark here that the common zeroes of wi give the multivalued slowness, see [8,23,21,22].)
This allows the numerical computations for bounded rather than measure-valued solution of the Liouville
equation, which greatly enhances the numerical resolution (see [22]). The moments can be recovered through
qðx; tÞ ¼
Z

f ðx; v; tÞ dv ¼
Z

/ðx; v; tÞPd
i¼1dðwiÞ dv; ð1:7Þ

uðx; tÞ ¼ 1

qðx; tÞ

Z
f ðx; v; tÞv dv ¼

Z
/ðx; v; tÞvPd

i¼1dðwiÞ dv=qðx; tÞ. ð1:8Þ
Thus one only involves numerically the delta-function at the output time!
Numerical computations of multivalued solution for smooth c(x) using this technique were given in [22]. In

this paper, we will also give numerical examples using this technique with a discontinuous c(x).
The more general case with partial transmissions and reflections will be studied in a forthcoming paper [26].
This paper is organized as follows. In Section 2, we first show that the usual finite difference scheme to solve

the Liouville equation with a discontinuous wave speed suffers from the severe stability constraint. We then
present the design principle of our Hamiltonian-preserving scheme by describing the behavior of waves at
an interface. We present Scheme I in one space dimension in Section 3 and study its positivity and stability
in both l1 and l1 norms. Scheme II in one space dimension is presented and studied in Section 4. We extend
these schemes to two space dimension in Section 5 in the simple case of interface aligning with the grids and a
plane wave. Numerical examples, with analytical solutions constructed, are given in Section 6 to verify the
accuracy of the schemes. For comparison, we also present numerical solutions by methods ignoring or smear-
ing the discontinuity of c. We make some concluding remarks in Section 7.

2. The design principle of the Hamiltonian-preserving scheme

2.1. Deficiency of the usual finite difference schemes

Consider the numerical solution of the Liouville equation in one physical space dimension
ft þ cðxÞ signðnÞfx � cxjnjfn ¼ 0 ð2:1Þ

with a discontinuous wave speed c(x).



S. Jin, X. Wen / Journal of Computational Physics 214 (2006) 672–697 675
We employ a uniform mesh with grid points at xiþ1
2
, i = 0, . . .,N, in the x-direction and njþ1

2
, j = 0, . . .,M in

the n-direction. The cells are centered at (xi,nj), i = 1, . . .,N, j = 1, . . .,M with xi ¼ 1
2
ðxiþ1

2
þ xi�1

2
Þ and

nj ¼ 1
2
ðnjþ1

2
þ nj�1

2
Þ. The mesh size is denoted by Dx ¼ xiþ1

2
� xi�1

2
, Dn ¼ njþ1

2
� nj�1

2
. We also assume a uniform

time step Dt and the discrete time is given by 0 = t0 < t1 <� � �< tL = T. We introduce mesh ratios kt
x ¼ Dt

Dx,
kt

n ¼ Dt
Dn, assumed to be fixed. We define the cell average of f as
fij ¼
1

Dx Dn

Z x
iþ1

2

x
i�1

2

Z n
jþ1

2

n
j�1

2

f ðx; n; tÞ dn dx.
A typical semi-discrete finite difference method for this equation is
otfij þ ci signðnjÞ
fiþ1

2;j
� fi�1

2;j

Dx
� Dci jnjj

fi;jþ1
2
� fi;j�1

2

Dn
¼ 0; ð2:2Þ
where the numerical fluxes fiþ1
2;j

, fi;jþ1
2

are defined by the upwind scheme, and Dci is some numerical approx-
imation of cx at x = xi.

Such a discretization suffers from two problems:

� If an explicit time discretization is used, the CFL condition for this scheme requires the time step to satisfy
Dt max
i

ci

Dx
þ
jDcij max

j
jnjj

Dn

2
4

3
5 6 1. ð2:3Þ
Since the wave speed c(x) is discontinuous at some points, maxi |Dci| = O(1/Dx), so the CFL condition (2.3)
requires Dt = O(DxDn), which is too expensive for a hyperbolic problem.

� The above discretization in general does not preserve a constant Hamiltonian H = c|n| across the disconti-
nuities of c, thus may not produce numerical solutions consistent with, for example, Snell�s law of
refraction.

2.2. Behavior of waves at the interface

When a wave moves with its density distribution governed by the Liouville equation (1.1), the Hamiltonian

H = c|v| should be preserved across the interface:
cþjvþj ¼ c�jv�j; ð2:4Þ

where the superscripts ± indicate the right and left limits of the quantity at the interface.

We will discuss the wave behavior in one and two space dimensions, respectively.

� One space dimension. The 1D case is simple. Consider the case when, at an interface, the characteristic
on the left of the interface is given by n� > 0. Then the particle definitely crosses the interface and
nþ ¼ c�

cþn
�.

� Two space dimension, when an incident plane wave hits an interface that aligns with the grid. In the 2D
case, x = (x,y), v = (n,g). Consider the case that the interface is a line parallel to the y-axis. The incident
wave has slowness (n�,g�) to the left side of the interface, with n� > 0. Since the interface is vertical,
(1.3) implies that g will not change across the interface, while n has three possibilities:
(1) c� > c+. In this case, the local wave speed decreases, so the wave will cross the interface and increase its

n value in order to maintain a constant Hamiltonian. (2.4) implies
nþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�

cþ

� �2

ðn�Þ2 þ c�

cþ

� �2

� 1

� �
ðg�Þ2

s
.

(2) c� < c+ and ðc�cþÞ
2ðn�Þ2 þ ½ðc�cþÞ

2 � 1�ðg�Þ2 > 0. In this case the wave can also cross the interface with a
reduced n value. (2.4) still gives
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nþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�

cþ

� �2

ðn�Þ2 þ c�

cþ

� �2

� 1

� �
ðg�Þ2

s
.

(3) c� < c+ and ðc�cþÞ
2ðn�Þ2 þ ½ðc�cþÞ

2 � 1�ðg�Þ2 < 0. In this case, there is no possibility for the wave to cross the
interface, so the wave will be reflected with slowness (�n�,g�).

If n� < 0, similar behavior can also be analyzed using the constant Hamiltonian condition (2.4).

Remark 2.1. In general, one cannot define a unique weak solution to a linear hyperbolic equation with
singular (discontinuous or measure-valued) coefficients. By using the wave behavior described above, we give a
selection criterion for a unique solution. This solution is the one when the wave length of the incident wave is
much smaller than the width of the interface, both of which go to zero. It is equivalent to Snell�s law of
refraction:
sin hi

c�
¼ sin ht

cþ
; ð2:5Þ
where hi and ht stand for angles of incident and transmitted waves, respectively. This is to say:
g�

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�Þ2 þ ðg�Þ2

q ¼ gþ

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþÞ2 þ ðgþÞ2

q . ð2:6Þ
If c = c(x), then (1.3) implies that
gþ ¼ g�. ð2:7Þ
Clearly (2.6) and (2.7) imply (2.4).
Of course this is not the only physically relevant way to choose a solution. In particular, this principle

excludes the more general case that allows partial reflections and transmissions. It applies to the case when the
wave length of the incident wave is much shorter than the width of the interface as both lengths go to zero. The
more general case of partial transmissions and reflections is a topic of a forthcoming paper [26].

The main ingredient in the well-balanced kinetic scheme by Perthame and Semioni [33] for the shallow water
equations with topography was to build in the Hamiltonian-preserving mechanism into the numerical flux in
order to preserve the steady state solution of the shallow water equations when the water velocity is zero. This
is achieved using the fact that the density distribution f remains unchanged along the characteristic, thus
f ðt; xþ; nþÞ ¼ f ðt; x�; n�Þ ð2:8Þ

at a discontinuous point x of c(x), where for example, n+ is defined through the constant Hamiltonian con-
dition (2.4).

In this paper, we use this mechanism for the numerical approximation to the Liouville equation (1.1) with a
discontinuous wave speed. This approximation, by its design, maintains a constant Hamiltonian modulus the
numerical approximation error across the interface. In [24] we introduced two Hamiltonian-preserving
schemes for the Liouville equation arising from the semiclassical limit of the linear Schrödinger equation
by incorporating this particle behavior into the numerical flux.
3. Scheme I: a finite difference approach

3.1. A Hamiltonian-preserving numerical flux

We now describe our first finite difference scheme (called Scheme I) for the Liouville equation with a dis-
continuous local wave speed.

Assume that the discontinuous points of wave speed c are located at the grid points. Let the left and right
limits of c(x) at point xi+1/2 be cþ

iþ1
2

and c�
iþ1

2
, respectively. Note that if c is continuous at xi+1/2, then cþ

iþ1
2

¼ c�
iþ1

2
.

We approximate c by a piecewise linear function
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cðxÞ � cþi�1=2 þ
c�iþ1=2 � cþi�1=2

Dx
ðx� xi�1=2Þ.

þ �
We also define the averaged wave speed as ci ¼
c

i�1
2

þc
iþ1

2

2
. We will adopt the flux splitting technique used in

[33]. The semi-discrete scheme (with continuous time) reads
ðfijÞt þ
ci signðnjÞ

Dx
f �iþ1

2;j
� f þ

i�1
2;j

� �
�

c�
iþ1

2
� cþ

i�1
2

DxDn
jnjj fi;jþ1

2
� fi;j�1

2

� �
¼ 0; ð3:1Þ
where the numerical fluxes fi;jþ1
2

is defined using the upwind discretization. Since the characteristics of the
Liouville equation maybe different on the two sides of the interface, the corresponding numerical fluxes should
also be different. The essential part of our algorithm is to define the split numerical fluxes f �

iþ1
2;j

, f þ
i�1

2;j
at each cell

interface. We will use (2.8) to define these fluxes.
Assume c is discontinuous at xi+1/2. Consider the case nj > 0. Using upwind scheme, f �

iþ1
2;j
¼ fij. However,
f þiþ1=2;j ¼ f ðxþiþ1=2; n
þ
j Þ ¼ f ðx�iþ1=2; n

�
j Þ
while n�j is obtained from nþj ¼ nj from (2.4). Since n�j may not be a grid point, we have to define it approx-
imately. The first approach is to locate the two cell centers that bound n�j , then use a linear interpolation to
evaluate the needed numerical flux at n�. The case of nj < 0 is treated similarly. The detailed algorithm to gen-
erate the numerical flux is given below.

Algorithm I

� if nj > 0

f �

iþ1
2;j
¼ fij,

n� ¼
cþ

iþ1
2

c�
iþ1

2

nj

if nk 6 n� < nkþ1 for some k

then f þ
iþ1

2;j
¼ nkþ1�n�

Dn fi;k þ n��nk
Dn fi;kþ1,

� if nj < 0

f þ

iþ1
2;j
¼ fiþ1;j,

nþ ¼
c�

iþ1
2

cþ
iþ1

2

nj

if nk 6 nþ < nkþ1 for some k

then f �
iþ1

2;j
¼ nkþ1�nþ

Dn fiþ1;k þ nþ�nk
Dn fiþ1;kþ1.
The above algorithm for evaluating numerical fluxes is of first order. One can obtain a second order flux by
incorporating the slope limiter, such as van Leer or minmod slope limiter [29], into the above algorithm. This
can be achieved by replacing fik with fik þ Dx

2
sik, and replacing fi+1,k with fiþ1;k � Dx

2
siþ1;k in the above algorithm

for all the possible index k, where sik is the slope limiter in the x-direction.
After the spatial discretization is specified, one can use any time discretization for the time derivative.
3.2. Positivity and l1 contraction

Since the exact solution of the Liouville equation is positive when the initial profile is, it is important that
the numerical solution inherits this property.

We only consider the scheme using the first order numerical flux, and the forward Euler method in time.
Without loss of generality, we consider the case nj > 0 and c�

iþ1
2
< cþ

i�1
2

for all i (the other cases can be treated
similarly with the same conclusion). The scheme reads
f nþ1
ij � f n

ij

Dt
þ ci

fij � ðd1fi�1;k þ d2fi�1;kþ1Þ
Dx

�
c�

iþ1
2
� ci�1

2þ

Dx
nj

fij � fi;j�1

Dn
¼ 0;
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where d1, d2 are non-negative and d1 + d2 = 1. We omit the superscript n of f. The above scheme can be rewrit-
ten as
f nþ1
ij ¼ 1� cik

t
x �

c�
iþ1

2
� cþ

i�1
2

��� ���
Dx

jnjjkt
n

0
@

1
Afij þ cik

t
xðd1fi�1;k þ d2fi�1;kþ1Þ þ

c�
iþ1

2
� cþ

i�1
2

��� ���
Dx

jnjjkt
nfi;j�1. ð3:2Þ
Now we investigate the positivity of scheme (3.2). This is to prove that if f n
ij P 0 for all (i, j), then this is also

true for f n+1. Clearly, one just needs to show that all coefficients for fn are non-negative. A sufficient condition
for this is clearly
1� cik
t
x �

c�
iþ1

2
� cþ

i�1
2

��� ���
Dx

jnjjkt
n P 0;
or � �2 3

Dt max

i;j

ci

Dx
þ

�c�
iþ1

2

�cþ
i�1

2

�
Dx

jnjj
Dn

664 775 6 1. ð3:3Þ
This CFL condition is similar to the CFL condition (2.3) of the usual finite difference scheme except that

the quantity
jc�

iþ1
2

�cþ
i�1

2

j

Dx now represents the wave speed gradient at its smooth point, which has a finite upper
bound. Thus our scheme allows a time step Dt = O(Dx,Dn), a significant improvement over a standard
discretization.

According to the study in [32], our second order scheme, which incorporates slope limiter into the first order
scheme, is positive under the half CFL condition, namely, the constant on the right-hand side of (3.3) is 1/2.

The above conclusion is analyzed based on forward Euler time discretization. One can draw the same con-
clusion for the second order TVD Runge–Kutta time discretization [40].

The l1-contracting property of this scheme follows easily, because the coefficients in (3.2) are positive and
the sum of them is 1.

3.3. The l1-stability of Scheme I

In this section, we prove the l1-stability of Scheme I (with the first order numerical flux and the forward
Euler method in time). The proof is similar to that in [25] with difference in details due to different particle
behaviors at the interface.

For simplicity, we consider the case when the wave speed has only one discontinuity at grid point xmþ1
2

with
c�

mþ1
2
> cþ

mþ1
2

, and c 0(x) > 0 at smooth points. The other cases, namely, when c 0(x) 6 0, or when the wave speed

has several discontinuous points with increased or decreased jumps, can be discussed similarly. Denote
kc � cþ

mþ1
2

=c�
mþ1

2
< 1.

We consider the general case that n1 < 0, nM > 0. For this case, the study in [22] suggests that the compu-
tational domain should exclude a set On ¼ fðx; nÞ 2 R2jn ¼ 0g which causes singularity in the velocity field.
For example, we can exclude the following index set� �	
Do ¼ ði; jÞ jnjj <
Dn
2

��� ;
from the computational domain.
Since c(x) has a discontinuity, we also define an index set
D4
l ¼ fði; jÞjxi 6 xm; nj < kcn1g.
Due to the slowness change across the wave speed jump at xmþ1
2
, D4

l represents the area where waves come
from outside of the domain [x1,xN] · [n1,nM]. In order to implement our scheme conveniently, this index set is
also excluded from the computational domain. Thus the computational domain is chosen as
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Ed ¼ fði; jÞji ¼ 1; . . . ;N ; j ¼ 1; . . . ;Mg n fDo [ D4
lg. ð3:4Þ
A sketch of Ed and D4
l is shown in Fig. 1 in Section 4.2.

As a result of excluding the index set Do from the computational domain, the computational domain is split
into two independent parts
Ed ¼ fði; jÞ 2 Ed jnj > 0g [ fði; jÞ 2 Ed jnj < 0g � Eþd [ E�d .
The l1-stability study of Scheme I can be carried out in these two domains, respectively. In the following we
prove the l1-stability of Scheme I in the domain E�d . The study in the domain Eþd can be made similarly.

We define the l1-norm of a numerical solution ui j in the set E�d to be
jf j1 ¼
1

N�d

X
ði;jÞ2E�d

jfijj
with N�d being the number of elements in E�d . Given the initial data f 0
ij ; ði; jÞ 2 E�d . Denote the numerical solu-

tion at time T to be f L
ij , ði; jÞ 2 E�d . To prove the l1-stability, we need to show that |f L|1 6 C |f 0|1.

Due to the linearity of the scheme, the equation for the error between the analytical and the numerical solu-
tion is the same as (3.2), so in this section, fij will denote the error. We assume there is no error at the bound-
ary, thus f n

ij ¼ 0 at the boundary. If the l1-norm of the error introduced at each time step in incoming
boundary cells is ensured to be o(1) part of |fn|1, our following analysis still applies.

Now denote
Ai ¼
1

Dx
c�iþ1

2
� cþ

i�1
2

��� ���. ð3:5Þ
Assume an upper bound for the wave speed slope is Au, Ai < Au "i. These notations will be used below as well
as in the stability proof of Scheme II. One also has 1

Dxjci � ci�1j < Au 8i. Assume the wave speed has a lower
bound Cm, ci > Cm > 0 "i.

When nj < 0, Scheme I is given by

(1) if i = m,
f nþ1
ij ¼ ð1� Aijnjjkt

n � cik
t
xÞfij þ Aijnjjkt

nfi;jþ1 þ cik
t
xfiþ1;j; ð3:6Þ
(2) f nþ1
mj ¼ ð1� Amjnjjkt

n � cmkt
xÞfmj þ Amjnjjkt

nfm;jþ1 þ cmkt
xðdjkfmþ1;k þ dj;kþ1fmþ1;kþ1Þ; ð3:7Þ
where 0 6 djk 6 1 and djk + dj,k + 1 = 1. In (3.7) k is determined by nk 6
nj

kc
< nkþ1.
When summing up all absolute values of f nþ1
ij in (3.6) and (3.7), one typically gets the following inequality:
jf nþ1j1 6
1

N�d

X
ði;jÞ2E�d

aijjf n
ij j; ð3:8Þ
where the coefficients ai j are positive. One can check that, under the CFL condition (3.3), ai j 6 1 + 2AuDt

except for possibly ði; jÞ 2 D�mþ1 defined as
D�mþ1 ¼ fði; jÞ 2 E�d ji ¼ mþ 1g.
We next derive the bound for M� defined as
M� ¼ max
ðmþ1;jÞ2D�mþ1

amþ1;j.
Define the set
Smþ1
j ¼ j0jnj0 < 0;

nj0

kc
� nj

����
���� < Dn

	 �
for ðmþ 1; jÞ 2 D�mþ1.
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Let the number of elements in Smþ1
j be Nmþ1

j . One can check that Nmþ1
j 6 2kc þ 1 because every two elements

j01, j02 2 Sm
j satisfy j

nj0
1

kc
�

nj0
2

kc
jP Dn

kc
.

On the other hand, one can easily check from (3.6) and (3.7), for ðmþ 1; jÞ 2 D�mþ1,
amþ1;j < 1� cmþ1k
t
x þ cmkt

x 2kc þ 1ð Þ ¼ 1þ ðcm þ cmþ1Þkt
x þOðDxÞ;
so for sufficiently small Dx, M� can be bounded by
M� < 1þ 2ðcm þ cmþ1Þkt
x.
Denote M 0 ¼ 2ðcm þ cmþ1Þkt
x. From (3.8),
jf nþ1j1 < ð1þ 2AuDtÞjf nj1 þ
M 0

N�d

X
ðmþ1;jÞ2D�mþ1

jf n
mþ1;jj. ð3:9Þ
We now establish the following theorem:

Theorem 3.1. Under the CFL condition (3.3), the scheme (3.6), (3.7) is l1-stable
jf Lj1 < Cjf 0j1.
Proof. From (3.9), 2 38 9

jf Lj1 < ð1þ 2AuDtÞL jf 0j1 þ

M 0

N�d

XL�1

n¼0

X
ðmþ1;jÞ2D�mþ1

jf n
mþ1;jj4 5<

:
=
;. ð3:10Þ
It remains to estimate
S ¼
XL�1

n¼0

X
ðmþ1;jÞ2D�mþ1

jf n
mþ1;jj

8<
:

9=
;. ð3:11Þ
Define the set
Sr ¼ fði; jÞjxi > xmþ1
2
; ðmþ 1; jÞ 2 D�mþ1g
"(i, j) 2 Sr, due to the zero boundary condition and the upwind nature of the scheme, one has
f n
ij ¼

X
ðp;qÞ2Sr ;pPi

bijn0
pq f 0

pq; ði; jÞ 2 Sr ð3:12Þ
with bijn0
pq P 0.

Notice D�mþ1 � Sr,
S 6
X
ðp;qÞ2Sr

XL�1

n¼0

X
ðmþ1;jÞ2D�mþ1

bmþ1;jn0
pq

0
@

1
Ajf 0

pqj �
X
ðp;qÞ2Sr

F ðp; qÞjf 0
pqj; ð3:13Þ
where we have defined
F ðp; qÞ ¼
XL�1

n¼0

X
ðmþ1;jÞ2D�mþ1

bmþ1;jn0
pq ; ðp; qÞ 2 Sr. ð3:14Þ
The next step is to estimate these coefficients. Define
bij0
pq ¼

X1
n¼0

bijn0
pq ; ði; jÞ; ðp; qÞ 2 Sr; p P i;
then (3.14) gives
F ðp; qÞ ¼
X

ðmþ1;jÞ2D�

XL�1

n¼0

bmþ1;jn0
pq 6

X
ðmþ1;jÞ2D�

bmþ1;j0
pq ; ðp; qÞ 2 Sr.
mþ1 mþ1
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We first evaluate
P
ðmþ1;jÞ2D�mþ1

bij0
pq when i = p. Denote cij

1 ¼ 1� Aijnjjkt
n � cik

t
x, cij

2 ¼ Aijnjjkt
n, ci

3 ¼ cik
t
x.

Under the CFL condition (3.3), cij
1 , cij

2 , ci
3 are positive. One also has cij

1 þ cij
2 6 1� Cmkt

x. From scheme
(3.6), it can be directly computed
X

ðmþ1;jÞ2D�mþ1

bpj0
pq <

X1
n¼0

ð1� Cmkt
xÞ

n ¼ 1

Cmkt
x

. ð3:15Þ
We now study the relation between
P
ðmþ1;jÞ2D�mþ1

bij0
pq and

P
ðmþ1;jÞ2D�mþ1

biþ1;j0
pq when i < p. From scheme (3.6),
bij;nþ1;0
pq ¼ cij

1 bijn0
pq þ cij

2 bi;jþ1;n0
pq þ ci

3b
iþ1;jn0
pq . ð3:16Þ
Summing up j in (3.16) gives
X
ðmþ1;jÞ2D�mþ1

bij;nþ1;0
pq ¼

X
ðmþ1;jÞ2D�mþ1

ðcij
1 þ ci;j�1

2 Þbijn0
pq þ ci

3

X
ðmþ1;jÞ2D�mþ1

biþ1;jn0
pq

< ð1� ci
3 þ Auk

t
nDnÞ

X
ðmþ1;jÞ2D�mþ1

bijn0
pq þ ci

3

X
ðmþ1;jÞ2D�mþ1

biþ1;jn0
pq ; ð3:17Þ
then a sum for n from 0 to 1 in (3.17) gives
ðci
3 � Auk

t
nDnÞ

X
ðmþ1;jÞ2D�mþ1

bij0
pq < ci

3

X
ðmþ1;jÞ2D�mþ1

biþ1;j0
pq ;
so
 X
ðmþ1;jÞ2D�mþ1

bij0
pq <

ci
3

ci
3 � Auk

t
nDn

X
ðmþ1;jÞ2D�mþ1

biþ1;j0
pq < 1þ Au

Cm
Dxþ oðDxÞ


 � X
ðmþ1;jÞ2D�mþ1

biþ1;j0
pq .
Thus for sufficiently small Dx, one has
X
ðmþ1;jÞ2D�mþ1

bij0
pq < 1þ 2Au

Cm
Dx


 � X
ðmþ1;jÞ2D�mþ1

biþ1;j0
pq ; i < p. ð3:18Þ
We now can evaluate F(p,q) for (p,q) 2 Sr. From the definition of Sr, when (p,q) 2 Sr, one has p P m + 1.
F ðp; qÞ 6
X

ðmþ1;jÞ2D�mþ1

bmþ1j0
pq < 1þ 2Au

Cm
Dx


 � X
ðmþ1;jÞ2D�mþ1

bmþ2j0
pq < � � � < 1þ 2Au

Cm
Dx


 �p�m�1 X
ðmþ1;jÞ2D�mþ1

bpj0
pq

< exp
2Au

Cm
ðxN � x1Þ


 � X
ðmþ1;jÞ2D�mþ1

bpj0
pq < exp

2Au

Cm
ðxN � x1Þ


 �
1

Cmkt
x

� CT . ð3:19Þ
Therefore, from (3.13) one gets
S 6
X
ðp;qÞ2Sr

F ðp; qÞjf 0
pqj < CT

X
ðp;qÞ2Sr

jf 0
pqj 6 CT

X
ðp;qÞ2E�d

jf 0
pqj ¼ CT N�d jf 0j1. ð3:20Þ
Combing (3.10) and (3.20),
jf Lj1 < ð1þ 2AuDtÞLfjf 0j1 þ CT M 0jf 0j1g < expð2AuT Þ½1þ CT M 0�jf 0j1 � Cjf 0j1;

where C ” exp(2Au T)[1 + C0TM ]. Thus Theorem 3.1 is proved. h

One can prove the similar conclusion for index set Eþd .

Remark 3.1. Theorem 3.1 holds for any l1 initial data. The corresponding result in the case of semiclassical
limit of Schrödinger equation [25] excludes the case of measure-valued initial data.
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4. Scheme II: a finite volume approach

4.1. A Hamiltonian-preserving numerical flux

In this section, we derive another flux based on the finite volume approach which results in an l1-contracting
scheme. We call this scheme as Scheme II.

Assuming the mesh grid is such that nj�1
2
and njþ1

2
do not have opposite sign. By integrating the Liouville equa-

tion (2.1) over the cell [xi�1/2, xi+1/2] · [nj�1/2,nj+1/2], one gets the following semi-discrete flux splitting scheme:
ðfijÞt þ
signðnjÞ

Dx
ðc�iþ1

2
f �iþ1

2;j
� cþ

i�1
2
f þ

i�1
2;j
Þ �

c�
iþ1

2
� ci�1

2
þ

DxDn
jnjþ1

2
jfi;jþ1

2
� jnj�1

2
jfi;j�1

2

� �
¼ 0. ð4:1Þ
In the finite volume approach, the numerical fluxes are defined as integrals of solution along the cell interface

which depend on the sign of nj and
c�

iþ1
2

�cþ
i�1

2

Dx . To illustrate the basic idea, we assume nj > 0,
c�

iþ1
2

�cþ
i�1

2

Dx < 0. In this caseZ

f �iþ1

2;j
¼ 1

Dn

n
jþ1

2

n
j�1

2

f x�iþ1
2
; n; t

� �
dn;

fi;jþ1
2
¼ 1

c�
iþ1

2

� cþ
i�1

2

Z x
iþ1

2

x
i�1

2

cxf x; n�jþ1
2
; t

� �
dx.
Note that f(x,n, t) may be discontinuous at the grid point x ¼ xiþ1
2

and n ¼ njþ1
2
.

By using condition (2.8):
f þ
iþ1

2;j
¼ 1

Dn

Z n
jþ1

2

n
j�1

2

f xþ
iþ1

2
; n; t

� �
dn ¼ 1

Dn

Z n
jþ1

2

n
j�1

2

f x�iþ1
2
; n; t

� �
dn; ð4:2Þ
where f is defined as !

f x�iþ1

2
; n; t

� �
¼ f x�iþ1

2
;
cþ

iþ1
2

c�
iþ1

2

n; t .
Using change of variable on (4.2) leads to
f þ
iþ1

2;j
¼ 1

Dn

Z n
jþ1

2

n
j�1

2

f x�iþ1
2
;
cþ

iþ1
2

n

c�
iþ1

2

; t

 !
dn ¼

c�
iþ1

2

cþ
iþ1

2

1

Dn

Z cþ
iþ1

2

n
jþ1

2
=c�

iþ1
2

cþ
iþ1

2

n
j�1

2
=c�

iþ1
2

f x�iþ1
2
; n; t

� �
dn. ð4:3Þ
The integral in (4.3) will be approximated by a quadrature rule. Since the end point cþ
iþ1

2

njþ1
2
=c�

iþ1
2

in (4.3) may

not be a grid point in the n-direction, special care needs to be taken at both ends of the interval
cþ
iþ1

2
nj�1

2
c�iþ1

2

.
; cþ

iþ1
2
njþ1

2
c�iþ1

2

.h i
. ð4:4Þ
We propose the following evaluation of the split fluxes f 	
iþ1

2;j
in (4.1).

Algorithm II

� if nj > 0
f �

iþ1
2;j
¼ fij,

n�1 ¼
cþ

iþ1
2

c�
iþ1

2

nj�1
2
; n�2 ¼

cþ
iþ1

2

c�
iþ1

2

njþ1
2

– if nk�1
2
6 n�1 < n�2 6 nkþ1

2
for some k

f þ
iþ1

2;j
¼ fik

– else nk�1
2
6 n�1 < nkþ1

2
< � � � < nkþs�1

2
< n�2 6 nkþsþ1

2
for some k, s

f þ
iþ1

2;j
¼

c�
iþ1

2

cþ
iþ1

2

n
kþ1

2
�n�1

Dn fik þ fi;kþ1 þ � � � þ fi;kþs�1 þ
n�2 �n

kþs�1
2

Dn fi;kþs

	 �
– end
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� if nj < 0
f þ

iþ1
2;j
¼ fiþ1;j,

nþ1 ¼
c�

iþ1
2

cþ
iþ1

2

nj�1
2
; nþ2 ¼

c�
iþ1

2

cþ
iþ1

2

njþ1
2

– if nk�1
2
6 nþ1 < nþ2 6 nkþ1

2
for some k

f �
iþ1

2;j
¼ fiþ1;k

– else nk�1
2
6 nþ1 < nkþ1

2
< � � � < nkþs�1

2
< nþ2 6 nkþsþ1

2
for some k, s

f �
iþ1

2;j
¼

cþ
iþ1

2

c�
iþ1

2

n
kþ1

2
�nþ

1

Dn fiþ1;k þ fiþ1;kþ1 þ � � � þ fiþ1;kþs�1 þ
nþ

2
�n

kþs�1
2

Dn fiþ1;kþs

	 �
– end

� end
Remark 4.1. The above algorithm uses a first order quadrature rule at the ends of the interval (4.4), thus it is
of first order even if the slope limiters in x-direction are incorporated into the algorithm. One can also use a
second order quadrature rule at the ends of intervals (4.4). But the resulting second order scheme is no longer
l1-contracting, which is the property of Scheme II, as will be proved in the next subsection. One can still prove
that this scheme is l1-stable, similar to the property of Scheme I. Compared with Scheme I, this scheme is sec-
ond order accurate and l1-stable, but more complex to implement. We will not present the detail of this numer-
ical scheme in this paper.
4.2. The l1-contraction, l1-stabilities and positivity of Scheme II

In this subsection, we study the l1 and l1 stability of Scheme II. Its positivity is obvious under the CFL
condition (3.3).

Theorem 4.1. If the forward Euler time discretization is used, then the flux given by Algorithm I yields the

scheme (4.1) which is l1-contracting and l1-stable.

Proof. In this proof we only discuss the case when the wave speed has one discontinuity at grid point xmþ1
2

with
c�

mþ1
2
> cþ

mþ1
2

, and c 0(x) > 0 at smooth points. The other situations can be discussed similarly.

We consider the general case that n1 < 0, nM > 0. We assume the mesh is such that 0 is a grid point in n-
direction. In this case, the index set
Do ¼ ði; jÞ jnjj <
Dn
2

����
�	
that needs to be excluded from the computational domain is null. As such, the cell interface {(x,n)|n = 0} is
actually the computational domain boundary where appropriate boundary conditions should be imposed
[22]. As discussed in Section 3.3, the computational domain is chosen as
Ed ¼ fði; jÞji ¼ 1; . . . ;N ; j ¼ 1; . . . ;Mg n D4
l ;
where
þ�( )
D4
l ¼ ði; jÞ xi 6 xm; nj�1

2
<

c
mþ1

2

c�
mþ1

2

n1
2

���� .
Define some subsets of Ed
Dþm ¼ ðm; jÞjnj P
Dn
2

	 �
;

Dþmþ1 ¼ ðmþ 1; jÞ nj P
Dn
2

����
	 �

;



684 S. Jin, X. Wen / Journal of Computational Physics 214 (2006) 672–697
D�m ¼ ðm; jÞ
cþ

mþ1
2

n1
2

cmþ1
2

6 nj�1
2
6 �Dn

�����
( )

;

D�mþ1 ¼ ðmþ 1; jÞ nj 6 �
Dn
2

����
	 �

.

These domains are shown in Fig. 1.
Recall the definition of Ai in (3.5). Our scheme (4.1) with Algorithm II can be made precise as

(1) if nj > 0, i 6¼ m + 1,
f nþ1
ij ¼ 1� Ainj�1

2k
t
n
� c�iþ1

2
kt

x

� �
fij þ Ainjþ1

2
kt

nfi;jþ1 þ cþ
i�1

2
kt

xfi�1;j; ð4:5Þ
(2) if nj < 0, i 6¼ m,
f nþ1
ij ¼ 1� Aijnj�1

2
jkt

n � cþ
i�1

2
kt

x

� �
fij þ Aijnjþ1

2
jkt

nfi;jþ1 þ c�iþ1
2
kt

xfiþ1;j; ð4:6Þ
(3) if nj > 0,
f nþ1
mþ1;j ¼ 1� Amþ1nj�1

2k
t
n
� c�mþ3

2
kt

x

� �
fmþ1;j þ Amþ1njþ1

2k
t
n
fmþ1;jþ1 þ cþ

mþ1
2
kt

xf
þ
mþ1

2;j
; ð4:7Þ
(4) if nj < 0,
f nþ1
mj ¼ 1� Amjnj�1

2
jkt

n � cþ
m�1

2
kt

x

� �
fmj þ Amjnjþ1

2
jkt

nfm;jþ1 þ c�mþ1
2
kt

xf
�
mþ1

2;j
; ð4:8Þ

where we omit the superscript n on the right-hand side.
By summing up (4.5)–(4.8) for (i, j) 2 Ed, one typically gets the following expression:
X
ði;jÞ2Ed

jf nþ1
ij j 6

X
ði;jÞ2Ed

aijjfijj þ
X

ðmþ1;jÞ2Dþ
mþ1

cþ
mþ1

2
kt

xjf þmþ1
2;j
j þ

X
ðm;jÞ2D�m

c�mþ1
2
kt

xjf �mþ1
2;j
j � I1 þ I2 þ I3. ð4:9Þ
ξ
1

ξ
M

D
m
+

–

D
m+1
+

D
m

D
m+1
–

E
d

D
l
4

x
1

x
N

x
m+1/2

Fig. 1. Sketch of the index sets Dþm , Dþmþ1, D�m , D�mþ1, D4
l .
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As in the proof of stability of Scheme I, we assume that f satisfies the zero boundary condition. In this sit-
uation, the coefficients aij in (4.9) satisfy
aij 6 1; ði; jÞ 2 Ed n fDþm [ D�mþ1g; ð4:10Þ
aij 6 1� c�mþ1

2
kt

x; ði; jÞ 2 Dþm ; ð4:11Þ

aij 6 1� cþ
mþ1

2
kt

x; ði; jÞ 2 D�mþ1. ð4:12Þ
We now study the relation between I2 and
P
ðm;jÞ2Dþm

jc�
mþ1

2
kt

xfmjj. Let
pMþ1 ¼
cþ

mþ1
2

nMþ1
2

c�
mþ1

2

;

and assume
nk�1
2
< pMþ1 6 nkþ1

2
6 nMþ1

2
.

Assume nJ2�1
2
¼ 0 for some J2, since
1

kt
xc
�
mþ1

2

I2 6

Xk�1

j¼J2

jfmjj þ
pNþ1 � nk

Dn
jfmkj 6

X
ðm;jÞ2Dþm

jfmjj;
thus
I2 6

X
ðm;jÞ2Dþm

c�mþ1
2
kt

xfmj

��� ���. ð4:13Þ
Similarly, one gets
I3 6

X
ðmþ1;jÞ2D�mþ1

cþ
mþ1

2
kt

xfmþ1;j

��� ���. ð4:14Þ
Combining (4.9)–(4.14) gives
X
ði;jÞ2Ed

jf nþ1
ij j 6

X
ði;jÞ2Ed

jf n
ij j. ð4:15Þ
This is the l1-contracting property of Scheme II.
Next we prove the l1-stability. Observing that the coefficients on the right-hand side of (4.5)–(4.8) are

positive, it remains to estimate the sum of these coefficients (SC). In (4.5), the SC is
SC1 ¼ 1þ ðcþ
i�1

2
� c�iþ1

2
Þkt

x þ AiDnkt
n < 1þ 2AuDt. ð4:16Þ
In (4.6), the SC is
SC2 ¼ 1þ ðc�iþ1
2
� cþ

i�1
2
Þkt

x � AiDnkt
n < 1þ 2AuDt. ð4:17Þ
Now we derive the SC in (4.8). Denote
n01 ¼
c�

mþ1
2

cþ
mþ1

2

nj�1
2
; n02 ¼

c�
mþ1

2

cþ
mþ1

2

njþ1
2
. ð4:18Þ
The condition cþ
mþ1

2

< c�
mþ1

2
gives n02 � n01 > Dn. Therefore, it is impossible that nk�1

2
6 n01 < n02 6 nkþ1

2
for any

k. Assume nk�1
2
6 n01 < nkþ1

2
< � � � < nkþs�1

2
< n02 6 nkþsþ1

2
with s P 1. In this case
f �mþ1
2;j
¼

cþ
mþ1

2

c�
mþ1

2

nkþ1
2
� n01

Dn
fmþ1;k þ fmþ1;kþ1 þ � � � þ fmþ1;kþs�1 þ

n02 � nkþs�1
2

Dn
fmþ1;kþs

( )
. ð4:19Þ
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Substituting (4.19) into (4.8) yields the evaluation
SC3 ¼ 1� AmDnkt
n � cþ

m�1
2
kt

x þ c�mþ1
2
kt

x

cþ
mþ1

2

c�
mþ1

2

nkþ1
2
� n01

Dn
þ

nkþ3
2
� nkþ1

2

Dn
þ � � � þ

n02 � nkþs�1
2

Dn

 !" #

¼ 1� AmDnkt
n � cþ

m�1
2
kt

x þ c�mþ1
2
kt

x < 1þ 2AuDt. ð4:20Þ
Now we consider case (4.7). Denote
n01 ¼
cþ

mþ1
2

c�
mþ1

2

nj�1
2
; n02 ¼

cþ
mþ1

2

c�
mþ1

2

njþ1
2
. ð4:21Þ
In this case, we know n02 � n01 < Dn. So there are two cases nk�1
2
6 n01 < n02 6 nkþ1

2
or nk�1

2
6 n01 <

nkþ1
2
< n02 6 nkþ3

2
corresponding, respectively, to
f þ
mþ1

2;j
¼ fmk ð4:22Þ
or
f þ
mþ1

2;j
¼

c�
mþ1

2

cþ
mþ1

2

nkþ1
2
� n01

Dn
fmk þ

n02 � nkþ1
2

Dn
fm;kþ1

( )
. ð4:23Þ
Similar to the deduction of (4.20), one can check, for both cases, that
SC4 ¼ 1þ Amþ1Dnkt
n � c�mþ3

2
kt

x þ cþ
mþ1

2
kt

x < 1þ 2AuDt. ð4:24Þ
Combining (4.16), (4.17), (4.20) and (4.24), one gets
jf nþ1j1 < ð1þ 2AuDtÞjf nj1;

thus
jf Lj1 < ð1þ 2AuDtÞLjf 0j1 < e2AuT jf 0j1. ð4:25Þ

This is the l1-stability property of Scheme II. h
5. The schemes in two space dimension

Consider the Liouville equation in two space dimension:
ft þ
cðx; yÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q fx þ
cðx; yÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q fy � cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
fn � cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
fg ¼ 0. ð5:1Þ
We employ a uniform mesh with grid points at xiþ1
2
, yjþ1

2
, nkþ1

2
, glþ1

2
in each direction. The cells are centered at

(xi,yj,nk,gl) with xi ¼ 1
2
ðxiþ1

2
þ xi�1

2
Þ, yj ¼ 1

2
ðyjþ1

2
þ yj�1

2
Þ, nk ¼ 1

2
ðnkþ1

2
þ nk�1

2
Þ, gl ¼ 1

2
ðglþ1

2
þ gl�1

2
Þ. The mesh size is

denoted by Dx ¼ xiþ1
2
� xi�1

2
, Dy ¼ yjþ1

2
� yj�1

2
, Dn ¼ nkþ1

2
� nk�1

2
, Dg ¼ glþ1

2
� gl�1

2
. We define the cell average of f

as
fijkl ¼
1

DxDy DnDg

Z x
iþ1

2

x
i�1

2

Z y
jþ1

2

y
j�1

2

Z n
kþ1

2

n
k�1

2

Z g
lþ1

2

g
l�1

2

f ðx; y; n; g; tÞ dg dn dy dx.
Similar to the 1D case, we approximate c(x,y) by a piecewise bilinear function, and for convenience, we always
provide two interface values of c at each cell interface. When c is smooth at a cell interface, the two interface
values are identical. We also define the averaged wave speed in a cell by averaging the four cell interface values
cij ¼
cþ

i�1
2;j
þ c�

iþ1
2
þ cþ

i;j�1
2

c�
i;jþ1

2

4
.
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The 2D Liouville equation (5.1) can be semi-discretized as
ðfijklÞt þ
cijnk

Dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ g2
l

q f �iþ1
2;jkl � f þ

i�1
2;jkl

� �
þ cijgl

Dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ g2
l

q f �i;jþ1
2;kl � f þ

i;j�1
2;kl

� �

�
c�

iþ1
2;j
� cþ

i�1
2;j

DxDn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ g2
l

q
fij;kþ1

2;l
� fij;k�1

2;l

� �
�

c�
i;jþ1

2
� cþ

i;j�1
2

Dy Dg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ g2
l

q
fijk;lþ1

2
� fijk;l�1

2

� �
¼ 0;
where the numerical fluxes fij;kþ1
2;l

, fijk;lþ1
2

are provided by the upwind approximation, and the split fluxes values

f �
iþ1

2;jkl
, f þ

i�1
2;jkl

, f �
i;jþ1

2;kl
, f þ

i;j�1
2;kl

should be obtained using similar but slightly different algorithm for the 1D case,

since the particle behavior at the interface is different in 2d from that in 1d, as described in Section 2. For

example, to evaluate f 	
iþ1

2;jkl
we can extend Algorithm I as

Algorithm I in 2D

� if nk > 0
f �

iþ1
2;jkl
¼ fijkl,

– if
Cþ

iþ1
2
;j

C�
iþ1

2
;j

 !2

n2
k þ

Cþ
iþ1

2
;j

C�
iþ1

2
;j

 !2

� 1

2
4

3
5g2

l > 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ

1

 !2
Cþ

1

 !2
2 3vuu
n� ¼ iþ
2
;j

C�
iþ1

2
;j

n2
k þ

iþ
2
;j

C�
iþ1

2
;j

� 14 5g2
l

ut
if nk 0 6 n� < nk 0 + 1 for some k 0

then f þ
iþ1

2;jkl
¼ nk0þ1�n�

Dn fij;k0;l þ n��nk0
Dn fij;k0þ1;l

– else
f þ

iþ1
2;jkl
¼ fiþ1;j;k0 ;l where nk 0 = �nk

– end

� if nk < 0
f þ

iþ1
2;jkl
¼ fiþ1;jkl,

– if
C�

iþ1
2
;j

Cþ
iþ1

2
;j

 !2

n2
k þ

C�
iþ1

2
;j

Cþ
iþ1

2
;j

 !2

� 1

2
4

3
5g2

l > 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�

1

 !2
C�

1

 !2
2 3vuu
nþ ¼ � iþ
2
;j

Cþ
iþ1

2
;j

n2
k þ

iþ
2
;j

Cþ
iþ1

2
;j

� 14 5g2
l

ut

if nk 0 6 n+ < nk 0 + 1 for some k 0

then f �
iþ1

2;jkl
¼ nk0þ1�nþ

Dn fiþ1;j;k0 ;l þ nþ�nk0
Dn fiþ1;j;k0þ1;l

– else
f �

iþ1
2;jkl
¼ fi;j;k0 ;l where nk 0 = �nk

– end
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The flux f 	
i;jþ1

2;kl
can be constructed similarly.

The 2d version of Scheme II can be constructed similarly.
As introduced in Section 2.2, the essential difference between 1D and 2D flux definition is that in 2D case,
the phenomenon that a wave is reflected at the interface does occur. While in 1D, a wave is always transmitted
across an interface with a change of slowness.

Since the gradient of the wave speed at its smooth points are bounded by an upper bound, this scheme,
similar to the 1D scheme, is also subject to a hyperbolic CFL condition under which the scheme is positive,
and Hamiltonian preserving.
6. Numerical examples

In this section, we present numerical examples to demonstrate the validity of the proposed schemes and to
study their accuracy. In the numerical computations the second order TVD Runge–Kutta time discretization
[40] is used. In Example 6.2, we compare the results of Schemes I and II. In other examples, we present the
numerical results using Scheme I.

Example 6.1. An 1D problem with exact L1-solution. Consider the 1D Liouville equation
ft þ cðxÞ signðnÞfx � cxjnjfn ¼ 0 ð6:1Þ
with a discontinuous wave speed given by
cðxÞ ¼
0:6; x < 0;

0:5; x > 0.

	

The initial data are given by
f ðx; n; 0Þ ¼
1; x < 0; n > 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ n2

p
< 1;

1; x > 0; n < 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ n2

p
< 1;

0; otherwise;

8>><
>>: ð6:2Þ
as shown in the upper part in Fig. 2 which depicts the non-zero part of f(x,n, 0).
The exact solution at t = 1 is given by
f ðx; n; 1Þ ¼

1; 0 < x < 0:5; 0 < n < 1:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1:2x� 0:6Þ2

q
;

1; 0 < x < 0:5; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðxþ 0:5Þ2

q
< n < 0;

1; �0:4 < x < 0; 0 < n <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� 0:6Þ2

q
;

1; �0:6 < x < 0; � 1
1:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð x

1:2
þ 0:5Þ2

q
< n < 0;

0; otherwise;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:3Þ
as shown in the lower left part in Fig. 2.
The numerical solution computed with a 100 · 101 cell on the domain [�1.5,1.5] · [�1.5, 1.5] using Scheme

I is shown in the lower right part in Fig. 2. The time step is chosen as Dt ¼ 1
2Dn. It shows a good agreement

with the exact solution.
Table 1 compares the l1-error of the numerical solutions computed by Scheme I using 50 · 51, 100 · 101

and 200 · 201 cells, respectively. This comparison shows that the convergence rate of the numerical solution in
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Fig. 2. Example 6.1, solution in the phase space. Upper: non-zero part of the initial data; lower left: non-zero part of exact solution
f(x,n, 1); lower right: the part of numerical solution f(x,n, 1) > 0.5 computed by the 100 · 101 mesh. The horizontal axis is the position, the
vertical axis is the slowness.

Table 1
l1 error of numerical solutions for f on different meshes

Meshes 50 · 51 100 · 101 200 · 201

0.269575 0.171837 0.102073
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l1-norm is about 0.68. This agrees with the well established theory [27,42], that the l1-error by finite difference
scheme for a discontinuous solution of a linear hyperbolic equation is at most halfth order.

Example 6.2. Computing the physical observables of an 1D problem with measure-valued solution. Consider
the 1D Liouville equation (6.1), where the wave speed is
cðxÞ ¼

1
e�1
; x 6 �1;

1
e�1
þ 1þ x; �1 < x < 0;

1
e�1
þ 0:5� x; 0 < x < 1;

1
e�1
� 0:5; x P 1;

8>>><
>>>:
the initial data are given by
f ðx; n; 0Þ ¼ dðn� wðxÞÞ ð6:4Þ

with
wðxÞ ¼

0:8; x 6 �1:5;

0:8� 0:8
ð1:5Þ2 ðxþ 1:5Þ2; �1:5 < x 6 0;

�0:8þ 0:8
ð1:5Þ2 ðx� 1:5Þ2; 0 < x < 1:5;

�0:8; x P 1:5.

8>>>><
>>>>:

ð6:5Þ
Fig. 3 plots w(x) in a dashed line.
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In this example we are interested in the approximation of the moments, such as the density
Fig. 3.
vertica
qðx; tÞ ¼
Z

f ðx; n; tÞ dn;
and the averaged slowness
uðx; tÞ ¼
R

f ðx; n; tÞn dnR
f ðx; n; tÞ dn

.

These quantities are computed by decomposition techniques described in Section 1. We first solve the level
set function w and modified density function / which satisfy the Liouville equation (6.1) with initial data
n � w(x) and 1, respectively. Then the desired physical observables q and u are computed from the numerical
singular integrals (1.7), (1.8), which are computed by the technique described in [21].

The exact slowness and corresponding density at t = 1 are given in Appendix A. Fig. 3 shows the exact
multivalued slowness in solid line.

Firstly, we give the results using the standard finite difference method (SFDM) by either ignoring or
smoothing out the wave speed discontinuity. In the first case, denoted by SFDMI, one uses the same wave
speed approximation as in the Hamiltonian-preserving schemes, except that a standard upwind flux is used to
approximate the space derivative. Such a method has a hyperbolic CFL condition. In the second approach,
denoted by SFDMS, one smoothes out the wave speed discontinuity throughout several grid points, then uses
the standard upwind scheme for the space derivative. Fig. 4 presents the numerical densities given by these two
approaches using 100 · 80 mesh. For SFDMS, we choose the transition zone width to be 5Dx, and connect the
discontinuous wave speed by a linear function through the transition zone. We take Dt ¼ 1

5Dn. One can
observe that SFDMI gives a wrong solution, while the SFDMS gives correct but smeared solution across the
interface. Compared with the results by Schemes I and II, as shown in Fig. 5, SFDMS gives poorer numerical
resolution with a much smaller CFL number. In addition, for SFDMS, one has to choose the width of the
transition zone properly in order to guarantee the correct solution. A too narrow transition zone leads to a
more severe CFL condition and also may produce incorrect results as in SFDMI, while an appropriately wider
transition zone relaxes the CFL condition and may allow a convergent solution, but leads to more smeared
numerical solution across the interface.

We then present the results computed by our Hamiltonian-preserving schemes. In the computation, the
time step is chosen as Dt ¼ 1

3Dn. We first present numerical results without treating n = 0 as the domain
boundary and performing the delta function integrals (1.7), (1.8) without separating n > 0 and n < 0. This is
feasible for this example because the zero points of the level set function w are away from n = 0. Fig. 5 shows
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Example 6.2, slowness. Dashed line: initial slowness w(x); solid line: exact slowness at t = 1. The horizontal axis is position, the
l axis is slowness quantity.
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Fig. 4. Example 6.2, density q(x, t) at t = 1. Solid line: the exact solution; �
�: the numerical solutions by the SFDM using 100 · 80 mesh.
Left: SFDMI; Right: SFDMS.
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the numerical density and averaged slowness on different meshes using Scheme I plotted against the exact
solutions.

Table 2 presents the l1-errors of numerical densities q computed with several different meshes on the
domain [�1.5,1.5] · [�1.2, 1.2]. Table 3 presents the l1-errors of numerical averaged slowness u. RE in the
tables denotes the estimated convergence rate. It can be observed that the l1-convergence rate of the numerical
solutions for q and u are about first order. In comparison, Scheme II generally has larger numerical errors
than Scheme I in this test.

We next present numerical results by treating n = 0 as the domain boundary. We use the meshes on the
domain [�1.5,1.5] · [�1.2, 1.2] such that 0 is the a grid point in n coordinate. We impose the outflow boundary
condition at the domain boundary including the mesh interface n = 0 as done in [22], and perform the delta
function integrals (1.7), (1.8) on n > 0 and n < 0 separately.

Fig. 6 shows the calculated density using Schemes I and II together with the exact density on 400 · 320
mesh. It is observed that the Scheme I gives more accurate numerical solutions than Scheme II near the wave
speed jump x = 0. This is reasonable since Scheme I uses second order interpolation in constructing the
Hamiltonian-preserving numerical fluxes while Scheme II only uses first order integration rule, thus Scheme I
behaves better in preserving Hamiltonian across the wave speed discontinuity than Scheme II.

Table 4 presents the l1-errors of numerical densities q computed with several different meshes. Table 5
presents the l1-errors of numerical averaged slowness u. These results are more accurate than those given in
Tables 2 and 3 due to the imposing boundary condition at n = 0 as well as performing the delta function
integrals on n > 0 and n < 0 separately.

It should be remarked here that the l1-convergence rate of the numerical solutions reported in [24] is only
halfth order due to the discontinuities that exist in the level set function w which influence the accuracy when
evaluating the delta function integrals (1.7), (1.8) to obtain the moments. In the 1D Liouville equation of
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Fig. 5. Example 6.2, density q(x, t) and averaged slowness u(x, t) at t = 1. Solid line: the exact solutions; �
�: the numerical solutions
without imposing the boundary condition at n = 0. Upper: density; lower: averaged slowness. Left: 100 · 81 mesh; Right: 400 · 321 mesh.

Table 2
l1 error of numerical densities q on different meshes, without imposing the boundary condition at n = 0

Meshes 100 · 81 200 · 161 400 · 321 RE

Scheme I 3.0174E � 1 1.1792E � 1 6.0890E � 2 1.15
Scheme II 3.0145E � 1 1.2041E � 1 6.2534E � 2 1.13

Table 3
l1 error of numerical averaged slowness u on different meshes, without imposing the boundary condition at n = 0

Meshes 100 · 81 200 · 161 400 · 321 RE

Scheme I 4.1166E � 2 2.1229E � 2 8.9561E � 3 1.10
Scheme II 4.1249E � 2 2.2450E � 2 9.8773E � 3 1.03
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geometrical optics, there are also such discontinuities for the level set function due to the change of particle
slowness at the interface. But such discontinuities typically form the line parallel to the n-axis in the domain
n > 0 and n < 0, respectively, since the velocity of particles are only dependent on the local wave speed and the
sign of particle slowness, thus they do not influence the accuracy when evaluating the integrals (1.7), (1.8) of
the delta function along n direction at most part of physical domain. Thus the accuracy loss in the moment
evaluations does not occur here.

Example 6.3. Computing the physical observables of a 2D problem with a measure-valued solution. Consider
the 2D Liouville equation (5.1) with a discontinuous wave speed given by
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Fig. 6. Example 6.2, density q(x, t) at t = 1. Solid line: the exact solution; �
�: the numerical solutions on 400 · 320 mesh by imposing the
boundary condition at n = 0. Left: Scheme I; Right: Scheme II.

Table 4
l1 error of numerical densities q on different meshes, imposing the boundary condition at n = 0

Meshes 100 · 80 200 · 160 400 · 320 RE

Scheme I 1.3968E � 1 4.5126E � 2 2.3879E � 2 1.27
Scheme II 1.0579E � 1 5.4503E � 2 2.2259E � 2 1.12

Table 5
l1 error of numerical averaged slowness u on different meshes, imposing the boundary condition at n = 0

Meshes 100 · 80 200 · 160 400 · 320 RE

Scheme I 1.8792E � 2 1.3353E � 2 4.2112E � 3 1.08
Scheme II 2.1149E � 2 1.4421E � 2 4.6247E � 3 1.10
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cðx; yÞ ¼
ffiffiffiffiffiffiffi
0:8
p

; x > 0; y > 0;ffiffiffiffiffiffiffi
0:6
p

; else

(

and a delta function initial data
f ðx; y; n; g; 0Þ ¼ qðx; y; 0Þdðn� pðx; yÞÞdðg� qðx; yÞÞ;

where
qðx; y; 0Þ ¼
0 x > �0:1; y > �0:1;

1; else;

	
pðx; yÞ � qðx; yÞ ¼ 0:6.
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In this example we aim at computing the numerical density which is the first moment of this delta function
solution
Fig. 7.
left: th

Table
l1 erro

Grid p
qðx; y; tÞ ¼
Z Z

f ðx; y; n; g; tÞ dn dg.
The computational domain is chosen to be [x,y,n,g] 2 [�0.2, 0.2] · [�0.2, 0.2] · [0.3,0.9] · [0.3,0.9].

Set D1 ¼ 0:4
ffiffi
4
pffiffiffiffi
15
p � 0:2

ffiffi
2
p

3 , D2 ¼
ffiffiffi
2
p

; D3 ¼
ffiffi
9
8

q
, the exact density at t = 0.4 is
qðx; y; 0:4Þ ¼

1; x < 0 or y < 0;

D3; 0 6 x 6 D1; y P D2x;

D3; 0 6 y 6 D1; y 6 x
D2
;

0; otherwise

8>>><
>>>:

;

as shown in the upper left part in Fig. 7 plotted on 502 space mesh.
In the computation of this example, the time step is chosen as Dt ¼ 1

2Dx. Fig. 7 shows, respectively, the
numerical solutions of q with 144, 264 and 504 phase space meshes using Scheme I.

Table 6 presents the l1 errors of q on [0, 0.2] · [0, 0.2] computed by Scheme I with several different meshes in
phase space. The convergence order is about 1/2. In this example, since q is discontinuous initially, the
modified density function / is also discontinuous in the zero level set in phase space, contributing to the halfth
order accuracy in l1-convergence rate of q evaluated by formula (1.7).
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Example 6.3, density at t = 0.4 in space. Upper left: the exact solution; upper right: the numerical solution using 144 mesh; lower
e numerical solution using 264 mesh; lower right: the numerical solution using 504 mesh.

6
r of numerical density q on [0,0.2] · [0,0.2] using different meshes

oints 144 264 504

0.012411 0.010044 0.007741
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7. Conclusion

In this paper, we constructed and studied two classes of Hamiltonian-preserving schemes for the Liouville
equation arising in the phase space description of geometrical optics. These schemes are effective when the
local wave speed is discontinuous, corresponding to different media. These schemes have a hyperbolic CFL
condition, which is a significant improvement over a conventional discretization. The main idea is to build
in the wave behavior at the interface – which conserves the Hamiltonian – into the numerical flux, as was pre-
viously done in [24,33]. This gives a selection criterion on the choice of a unique solution to this linear hyper-
bolic equation with singular coefficients. It allows the wave to be transmitted obeying Snell�s law of refraction,
or be reflected. We established the stability theory of these discretizations, and conducted numerical experi-
ments to study the numerical accuracy.

In multidimension, we have presented the scheme only in the simple case when an incident plane wave hits
the interface that aligns with the grids, and when the reflection and transmission of waves do not occur simul-
taneously. This idea was extended to the more general case with partial reflections and transmissions [26]. For
a curved interface, the principle of Hamiltonian preserving can still be used, however, a different construction
of numerical flux at the interface is needed. In addition, the same idea can also be extended to problems with
external fields, such as the electrical or electromagnetic fields. There Vlasov–Poisson or Vlasov–Maxwell sys-
tems arise. It is also a worthwhile subject to extend it for anisotropic wave propagation [36] and the reduced
Liouville equation which is obtained using the constant Hamiltonian. Currently, we are exploring the Ham-
iltonian-preserving schemes in these more general applications.
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Appendix A

This appendix gives the exact multivalued slowness and density at t = 1 for the problem in Example 6.2.
Note that the multivalued slowness x is the common zeroes of wi defined in the introduction, while the aver-
aged slowness u is given by (1.8).

� In the domain �1.5 < x < �1, x(x) is single phased given by x(x) = 0.8 and the corresponding density is
the constant 1.
� In the domain �1 < x < 0, x has two phases. Set
x1 ¼
lnððe� 1Þxþ eÞ � 1

e� 1
� 1;

x2 ¼
1

2
þ 1

e� 1


 �
1� 1

ðe� 1Þ e
e�1
þ x

� 
 !

;

then
xiðxÞ ¼
wðxiÞcðxiÞ

cðxÞ ; i ¼ 1; 2.
The densities are given by
q1ðxÞ ¼
1

ðe� 1Þxþ e
;

q2ðxÞ ¼
1
2
þ 1

e�1

ðe� 1Þ e
e�1
þ x

� 2
.
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� In the domain 0 < x < eþ1
2e , x has two phases. Set
x1 ¼
1

ðe� 1Þ 1� 2xðe�1Þ
eþ1

� �� e
e� 1

;

x2 ¼
eþ 1

2e
þ x

e
;

then
xiðxÞ ¼
wðxiÞcðxiÞ

cðxÞ ; i ¼ 1; 2.
The densities are given by
q1ðxÞ ¼
2

ðeþ 1Þ 1� 2xðe�1Þ
eþ1

� �2
;

q2ðxÞ ¼
1

e
.

� In the domain eþ1
2e < x < 1, x is single phased. Set
x1ðxÞ ¼
eþ1
2e þ x

e ; x < 1
2
ðe� 1Þ;

1þ 3�e
2ðe�1Þ 1� ln 2ðe�1Þ

3�e
eþ1

2ðe�1Þ � x
� �� �� �

; x P 1
2
ðe� 1Þ;

8<
:

then
xðxÞ ¼ wðx1Þcðx1Þ
cðxÞ
with the corresponding density
qðxÞ ¼
1
e ; x < 1

2
ðe� 1Þ;

3�e

2ðe�1Þ eþ1
2ðe�1Þ�x

� � ; x P 1
2
ðe� 1Þ.

8<
:

� In the domain 1 < x < 1.5, x is single phased given by
xðxÞ ¼
�0:8þ 0:8

ð1:5Þ2 x� 2þ 1
e�1

� 2
; 1 < x < 2� 1

e�1
;

�0:8; 2� 1
e�1

< x < 1:5;

(

the corresponding density is the constant 1.
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