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Abstract

In this paper, we construct two classes of Hamiltonian-preserving numerical schemes for a Liouville equation with dis-
continuous local wave speed. This equation arises in the phase space description of geometrical optics, and has been the
foundation of the recently developed level set methods for multivalued solution in geometrical optics. We extend our pre-
vious work in [S. Jin, X. Wen, Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials,
Commun. Math. Sci. 3 (2005) 285-315] for the semiclassical limit of the Schrédinger equation into this system. The design-
ing principle of the Hamiltonian preservation by building in the particle behavior at the interface into the numerical flux is
used here, and as a consequence we obtain two classes of schemes that allow a hyperbolic stability condition. When a plane
wave hits a flat interface, the Hamiltonian preservation is shown to be equivalent to Snell’s law of refraction in the case
when the ratio of wave length over the width of the interface goes to zero, when both length scales go to zero. Positivity,
and stabilities in both /' and /°° norms, are established for both schemes. The approach also provides a selection criterion
for a unique solution of the underlying linear hyperbolic equation with singular (discontinuous and measure-valued) coef-
ficients. Benchmark numerical examples are given, with analytic solution constructed, to study the numerical accuracy of
these schemes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we construct and study numerical schemes for the Liouville equation in d-dimension:

fiAVH-Vf —VH -V f =0, t>0, x,v€ER’, (1.1)
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where the Hamiltonian H is given by

H(x,v,t) = c(x)|V| = c(x)y/v} + 03 + -+ + 02 (1.2)

with ¢(x) > 0 being the local wave speed. f{(z,x,V) is the density distribution of particles depending on position
X, time ¢ and the slowness vector v. In this paper, we are interested in the case when ¢(x) contains discontinu-
ities corresponding to different indices of refraction at different media. This discontinuity will generate an
interface at the point of discontinuity of ¢(x), and as a consequence waves crossing this interface will undergo
transmissions and reflections. The incident and transmitted waves obey Snell’s law of refraction.
The bicharacteristics of the Liouville equation (1.1) satisfy the Hamiltonian system:
dx v dv
E:C(X)h’—|7 a: —|V|VXC. (13)
In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along particle trajectory, even
across an interface.
This Liouville equation arises in the phase space description of geometrical optics. It is the high frequency
limit of the wave equation

Uy —c(x)’Au=0, t>0, xeR". (1.4)

Recently, several phase space based level set methods are based on this equation, see [13,16,22,31]. High fre-
quency limit of wave equations with transmissions and reflections at the interfaces was studied in [1,30,39]. A
Liouville equation based level set method for the wave front, but with only reflection, was introduced in [7]. It
was also suggested to smooth out the local wave speed in [31].

The Liouville equation (1.1) is a linear wave equation, with the characteristic speed determined by bichar-
acteristic (1.3). If ¢(x) is smooth, then the standard numerical methods (for example, the upwind scheme and
its higher order extensions) for linear wave equations give satisfactory results. However, if ¢(x) is discontinu-
ous, then the conventional numerical schemes suffer from two problems. Firstly, the characteristic speed ¢y of
the Liouville equation is infinity at the discontinuous point of wave speed. When numerically approximating ¢,
crossing the interface (for example by smoothing out ¢(x) [31]), the numerical derivative of ¢ is of O(1/Ax),
with Ax the mesh size in the physical space. Thus an explicit scheme needs time step Az = O(AxAv) with Av
the mesh size in particle slowness space. This is very expensive. Moreover, a conventional numerical scheme
in general does not preserve a constant Hamiltonian across the interface, usually leading to poor or even incor-
rect numerical resolutions by ignoring the discontinuities of ¢(x). Theoretically, there is a uniqueness issue for
weak solutions to these linear hyperbolic equations with singular wave speeds [6,9,19,34,35]. It is not clear
which weak solution a standard numerical discretization that ignores the discontinuity of ¢(x) will select.

We also remark that Hamiltonian or sympletic schemes have been introduced for Hamiltonian ODEs and
PDE:s in order to preserve the Hamiltonian or sympletic structures, see for example [15,28]. To our knowledge,
no such schemes have been constructed for Hamiltonian systems with discontinuous Hamiltonians.

In this paper, we construct a class of numerical schemes that are suitable for the Liouville equation (1.1)
with a discontinuous local wave speed c¢(x). An important feature of our schemes is that they are consistent
with the constant Hamiltonian across the interface. This gives a selection criterion for a unique solution to
the governing equation. As done in [24] for the Liouville equation for the semiclassical limit of the linear
Schrodinger equation, we call such schemes Hamiltonian-preserving schemes. A key idea of these schemes is
to build the behavior of a particle at the interface — either cross over with a changed velocity or be reflected
with a negative velocity — into the numerical flux. This idea was formerly used by Perthame and Semioni in
their work [33] to construct a well-balanced kinetic scheme for the shallow water equations with a (discontin-
uous) bottom topography which can capture the steady state solutions — corresponding to a constant energy —
of the shallow water equations when the water velocity is zero. As a consequence, these new schemes allow a
typical hyperbolic stability condition Az = O(Ax, Av).

We extend both classes of the Hamiltonian-preserving schemes developed in [24] here. One (called Scheme
1) is based on a finite difference approach, and involves interpolation in the slowness space. The second (called
Scheme II) uses a finite volume approach, and numerical quadrature rule in the slowness space is needed.
These new schemes allow a typical hyperbolic stability condition Az = O(Ax, Av). We will also establish the
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positivity and stability theory for both schemes. It is proved that Scheme I is positive, /*° contracting, and '
stable under a hyperbolic stability condition, while Scheme I is positive, /° stable and /' contracting under the
same stability condition.

By building in the wave behavior at the interface, we have also provided a selection principle to pick up a
unique solution to this linear hyperbolic equation with singular coefficients. For a plane wave hitting a flat
interface, we show that it selects the solution that describes the interface condition in geometrical optics gov-
erned by Snell’s law of refraction when the wave length is much shorter than the width of the interface while
both lengths go to zero.

In geometrical optics applications, one has to solve the Liouville equation like (1.1) with measure-valued
initial data

f(vaa O) = pO(X)é(V - uO(X))7 (15)

see for example [12,22,38]. The solution at later time remains measure-valued (with finite or even infinite num-
ber of concentrations — corresponding to multivalued solutions in the physical space). Computation of multi-
valued solutions in geometrical optics and more generally in nonlinear PDEs has been a very active area of
recent research, see [2-5,8,10,11,13,14,16-18,20,23,31,37,41].

Numerical methods for the Liouville equation with measure-valued initial data (1.5) could easily suffer from
poor resolution due to the numerical approximation of the initial data as well as numerical dissipation. The
level set method proposed in [21,22] decomposes f'into ¢ and y; (i =1,...,d) where ¢ and y; solve the same
Liouville equation with initial data

¢(Xa v, 0) = pO(X)a lﬁi(X,V, 0) =l — uiO(X)a (16)

respectively. (We remark here that the common zeroes of ; give the multivalued slowness, see [8,23,21,22].)
This allows the numerical computations for bounded rather than measure-valued solution of the Liouville
equation, which greatly enhances the numerical resolution (see [22]). The moments can be recovered through

p(x,t) = /f(x,v7 t) dv = /gb(x,v, O, 5(y;) dv, (1.7)
u(x,t) :/)(}170 /f(x,v, Hvdv = /¢(x, v, OVITL S(Y,) dv/p(x, ). (1.8)

Thus one only involves numerically the delta-function at the output time!

Numerical computations of multivalued solution for smooth ¢(x) using this technique were given in [22]. In
this paper, we will also give numerical examples using this technique with a discontinuous ¢(x).

The more general case with partial transmissions and reflections will be studied in a forthcoming paper [26].

This paper is organized as follows. In Section 2, we first show that the usual finite difference scheme to solve
the Liouville equation with a discontinuous wave speed suffers from the severe stability constraint. We then
present the design principle of our Hamiltonian-preserving scheme by describing the behavior of waves at
an interface. We present Scheme I in one space dimension in Section 3 and study its positivity and stability
in both °° and I' norms. Scheme II in one space dimension is presented and studied in Section 4. We extend
these schemes to two space dimension in Section 5 in the simple case of interface aligning with the grids and a
plane wave. Numerical examples, with analytical solutions constructed, are given in Section 6 to verify the
accuracy of the schemes. For comparison, we also present numerical solutions by methods ignoring or smear-
ing the discontinuity of ¢. We make some concluding remarks in Section 7.

2. The design principle of the Hamiltonian-preserving scheme
2.1. Deficiency of the usual finite difference schemes

Consider the numerical solution of the Liouville equation in one physical space dimension
Ji+c(x)sign()f — elélfe =0 (2.1)

with a discontinuous wave speed ¢(x).
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We employ a uniform mesh with grid points at Xitls i=0,...,N, in the x-direction and fj%,j =0,..,Min
the ¢-direction. The cells are centered at (x;¢), i=1,...,N, j=1,..,M with x; = %(x,- ot x;1) and
¢ = %(éj% + él,%). The mesh size is denoted by Ax = Xitd = X1 AE = éﬂ% — éj,%. We also assume a uniform

time step At and the discrete time is given by 0 =17, <¢; <---<f;, = T. We introduce mesh ratios 1. = %,
)fé = ﬁ—é, assumed to be fixed. We define the cell average of f as
1 XH% Crj+l
ij = P ’ X, 57 t dé dx
fj Ax Ag /x 1 /§ 1 f( )
=3 ]
A typical semi-discrete finite difference method for this equation is
. f;'+%,j - f}fl,/ fi,j+l - f;}j—l

Oufij + cisign(&)) TZ — Dc; [ # =0, (2.2)

where the numerical fluxes f; o fij 4 are defined by the upwind scheme, and Dc; is some numerical approx-

imation of ¢, at x = x;.
Such a discretization suffers from two problems:

e If an explicit time discretization is used, the CFL condition for this scheme requires the time step to satisfy
|Dc;| m}?lXMj‘

At max [+ <. (2.3)

Ax A¢
Since the wave speed c¢(x) is discontinuous at some points, max;|Dc,| = O(1/Ax), so the CFL condition (2.3)
requires At = O(AxA¢), which is too expensive for a hyperbolic problem.
e The above discretization in general does not preserve a constant Hamiltonian H = ¢|&| across the disconti-
nuities of ¢, thus may not produce numerical solutions consistent with, for example, Snell’s law of
refraction.

2.2. Behavior of waves at the interface

When a wave moves with its density distribution governed by the Liouville equation (1.1), the Hamiltonian
H = c|v| should be preserved across the interface:

v =c v, (2.4)

where the superscripts 4 indicate the right and left limits of the quantity at the interface.
We will discuss the wave behavior in one and two space dimensions, respectively.

e One space dimension. The 1D case is simple. Consider the case when, at an interface, the characteristic
on the left of the interface is given by & > 0. Then the particle definitely crosses the interface and
=g

e Two space dimension, when an incident plane wave hits an interface that aligns with the grid. In the 2D
case, x = (x,y), v=(¢&,n). Consider the case that the interface is a line parallel to the y-axis. The incident
wave has slowness (£7,17) to the left side of the interface, with &~ > 0. Since the interface is vertical,
(1.3) implies that # will not change across the interface, while ¢ has three possibilities:

(1) ¢ > ¢". In this case, the local wave speed decreases, so the wave will cross the interface and increase its
¢ value in order to maintain a constant Hamiltonian. (2.4) implies

e = (e[S ]

(2) ¢~ <c¢" and (2—1)2(57)2 + [(§—+)2 —1](77)* > 0. In this case the wave can also cross the interface with a
reduced ¢ value. (2.4) still gives
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+ ¢\ 2 _\2 ¢\ 2 32
¢ —\/(;) () + [(;) —l]w v
(3) ¢ <c"and (;’—;)2(5_)2 + [(;—;)2 —1](77)* < 0. In this case, there is no possibility for the wave to cross the
interface, so the wave will be reflected with slowness (=& ,17).

If & <0, similar behavior can also be analyzed using the constant Hamiltonian condition (2.4).

Remark 2.1. In general, one cannot define a unique weak solution to a linear hyperbolic equation with
singular (discontinuous or measure-valued) coefficients. By using the wave behavior described above, we give a
selection criterion for a unique solution. This solution is the one when the wave length of the incident wave is
much smaller than the width of the interface, both of which go to zero. It is equivalent to Snell’s law of
refraction:

sinf; sin 0,

; (2.5)

c” ct
where 6; and 0, stand for angles of incident and transmitted waves, respectively. This is to say:
n _ "
NEVH ) e )+ )
If ¢ = ¢(x), then (1.3) implies that

nt=n. 2.7)

Clearly (2.6) and (2.7) imply (2.4).

Of course this is not the only physically relevant way to choose a solution. In particular, this principle
excludes the more general case that allows partial reflections and transmissions. It applies to the case when the
wave length of the incident wave is much shorter than the width of the interface as both lengths go to zero. The
more general case of partial transmissions and reflections is a topic of a forthcoming paper [26].

The main ingredient in the well-balanced kinetic scheme by Perthame and Semioni [33] for the shallow water
equations with topography was to build in the Hamiltonian-preserving mechanism into the numerical flux in
order to preserve the steady state solution of the shallow water equations when the water velocity is zero. This
is achieved using the fact that the density distribution f remains unchanged along the characteristic, thus

fltx &) = f(t,x,&) (2.8)
at a discontinuous point x of ¢(x), where for example, ¢* is defined through the constant Hamiltonian con-
dition (2.4).

(2.6)

In this paper, we use this mechanism for the numerical approximation to the Liouville equation (1.1) with a
discontinuous wave speed. This approximation, by its design, maintains a constant Hamiltonian modulus the
numerical approximation error across the interface. In [24] we introduced two Hamiltonian-preserving
schemes for the Liouville equation arising from the semiclassical limit of the linear Schroédinger equation
by incorporating this particle behavior into the numerical flux.

3. Scheme I: a finite difference approach
3.1. A Hamiltonian-preserving numerical flux

We now describe our first finite difference scheme (called Scheme I) for the Liouville equation with a dis-
continuous local wave speed.

Assume that the discontinuous points of wave speed ¢ are located at the grid points. Let the left and right
limits of ¢(x) at point x;1/, be cltr% and ¢, respectively. Note that if ¢ is continuous at x;1,,, then c;% =c

i+
We approximate ¢ by a piecewise linear function

i+
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Chip —Clap (
Ax -
1TC L . L . .
We also define the averaged wave speed as ¢; = "T“ We will adopt the flux splitting technique used in
[33]. The semi-discrete scheme (with continuous time) reads

c(x) = citl/Z + X = Xi-1/2)-

+

c;sign(&; ¢, Cj
(f;'j)t + % ( j;%t/' _f;t%‘/) - % |Cj|< ij+% fi,j—%) = 03 (31)
where the numerical fluxes f;; i is defined using the upwind discretization. Since the characteristics of the
Liouville equation maybe different on the two sides of the interface, the corresponding numerical fluxes should
also be different. The essential part of our algorithm is to define the split numerical fluxes f Y /; * ¥ at each cell
interface. We will use (2.8) to define these fluxes.
Assume c is discontinuous at x;/,. Consider the case £;> 0. Using upwind scheme, S

ft+1/2J' :.f('xi+l/27 éjr) :f(xi;1/27 f;)

while ¢ is obtained from ﬁ;r = ¢; from (2.4). Since ¢; may not be a grid point, we have to define it approx-
imately. The first approach is to locate the two cell centers that bound ¢, then use a linear interpolation to
evaluate the needed numerical flux at ™. The case of &; <0 is treated similarly. The detailed algorithm to gen-
erate the numerical flux is given below.

Algorithm I

Y = f;;. However,

o if &>0
fl+-j o i
¢ = ij
if & < f < &y for some k

_ then fliz,j CM SdS f S A7 ikt
];i J 7ﬁ+1]>
é _ I‘sz

z+§

if & < & < &, for some k
then /- N CHI < frotp + Aé Ry

The above algorithm for evaluating numerical fluxes is of first order. One can obtain a second order flux by
incorporating the slope limiter, such as van Leer or minmod slope limiter [29], into the above algorithm. This
can be achieved by replacing fj with fy + 5%y, and replacing fi1 4 with fi,1x — %smﬁk in the above algorithm
for all the possible index k, where s, is the slope limiter in the x-direction.

After the spatial discretization is specified, one can use any time discretization for the time derivative.

3.2. Positivity and [*° contraction

Since the exact solution of the Liouville equation is positive when the initial profile is, it is important that
the numerical solution inherits this property.

We only consider the scheme using the first order numerical flux, and the forward Euler method in time.
Without loss of generality, we consider the case ;>0 and ¢, < cltl for all i (the other cases can be treated
similarly with the same conclusion). The scheme reads ’ ’

=1 n Sy — difioik + doficri) € =€
A Ax Ax

i1
i—+

¢, Ji—fi

AS

:07
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where d;, d, are non-negative and d; + d, = 1. We omit the superscript n of f. The above scheme can be rewrit-
ten as

- +
1—C
n+1 __ 1 _ C'/{t hL% ’7%
el — ;

v T A

- —cf

g

a i+} i—t
|§;‘ ﬁj+ci/{i(d1ﬁ—l,k+d2fi—l,k+1) Jr#

|2 fir- (3.2)

Now we investigate the positivity of scheme (3.2). This is to prove that if /;} > 0 for all (i, ), then this is also
true for /™!, Clearly, one just needs to show that all coefficients for /” are non-negative. A sufficient condition
for this is clearly

- —cf

i+% i—5

1 -l — &

2t
Le 20,

or

¢ L
At max |- -4+ —2 A¢| < 1. 3.3
i | Ax \él : B3

This CFL condition is similar to the CFL condition (2.3) of the usual finite difference scheme except that
e =" |

the quantity 7' now represents the wave speed gradient at its smooth point, which has a finite upper
bound. Thus our scheme allows a time step Az = O(Ax,A¢), a significant improvement over a standard
discretization.

According to the study in [32], our second order scheme, which incorporates slope limiter into the first order
scheme, is positive under the half CFL condition, namely, the constant on the right-hand side of (3.3) is 1/2.

The above conclusion is analyzed based on forward Euler time discretization. One can draw the same con-
clusion for the second order TVD Runge-Kutta time discretization [40].

The [”°-contracting property of this scheme follows easily, because the coefficients in (3.2) are positive and
the sum of them is 1.

3.3. The I'-stability of Scheme I

In this section, we prove the /'-stability of Scheme I (with the first order numerical flux and the forward
Euler method in time). The proof is similar to that in [25] with difference in details due to different particle
behaviors at the interface.

For 51mp11c1ty, we consider the case when the wave speed has only one discontinuity at grid point x i with

Coit > ct e and ¢/(x) > 0 at smooth points. The other cases, namely, when ¢’(x) < 0, or when the wave speed

has several discontinuous points with increased or decreased jumps, can be discussed similarly. Denote
Ao = c 4 e i <1.

We cons1der the general case that &, <0, &,,> 0. For this case, the study in [22] suggests that the compu-
tational domain should exclude a set O; = {(x, ¢) € R*|¢ = 0} which causes singularity in the velocity field.
For example, we can exclude the following index set

p,={a.n)lel <5}

from the computational domain.
Since ¢(x) has a discontinuity, we also define an index set

D4_{(l ])|x, xm7é <) f}

Due to the slowness change across the wave speed jump at x,, R D} represents the area where waves come
from outside of the domain [x;, xy] X [£1, Ear]. In order to implement our scheme conveniently, this index set is
also excluded from the computational domain. Thus the computational domain is chosen as
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E,={(i,)li=1,...,N,j=1,...,M}\ {D,uDj}. (3.4)

A sketch of E, and Df is shown in Fig. 1 in Section 4.2.
As a result of excluding the index set D, from the computational domain, the computational domain is split
into two independent parts

Eq={(i,]) € Eql&; > 0y U{(i,/) € E4l&; <0} =E; UE,.

The /'-stability study of Scheme I can be carried out in these two domains, respectively. In the following we
prove the ['-stability of Scheme I in the domain E;. The study in the domain E can be made similarly.
We define the /'-norm of a numerical solution u, ; in the set £ to be

|f|1—— > Il

t]EE

with N being the number of elements in £, . Given the initial data f7;, 9. (i,j) € E;. Denote the numerical solu-
tion at time 7 to be u’ (i,j) € E;. To prove the I'-stability, we need to show that 5 < C I

Due to the llnearlty of the scheme the equation for the error between the analytical and the numerical solu-
tion is the same as (3.2), so in this section, f;; will denote the error. We assume there is no error at the bound-
ary, thus f =0 at the boundary. If the I"-norm of the error introduced at each time step in incoming
boundary cells is ensured to be o(1) part of |[f|;, our following analysis still applies.

Now denote

1
Ax
Assume an upper bound for the wave speed slope is 4, 4; < 4,, Vi. These notations will be used below as well
as in the stability proof of Scheme II. One also has 3-|¢; — ¢;_y| < 4, Vi. Assume the wave speed has a lower
bound C,,, ¢;> C,,> 0 Vi.

When &; <0, Scheme I is given by

Ai:

i+5 i—y

c —c.*,‘. (3.5)

(1) if i = m,
ot = (1= Al &1L = eld)fy + ANE 2L iy + cidfivnys (3.6)
(2) f,Z;Ll - (1 _Amlfj| cmit)fmj +A |f Mffm\/-%—l + cm ( jkfm+l k + '4k+1.fm+1,k+1)7 (37)

where 0 < dy < 1 and dy + djy + 1= 1. In (3.7) k is determined by & <5 < &1

When summing up all absolute values of /7" !in (3.6) and (3.7), one typically gets the following inequality:
) < \N* > wlfl, (3.8)
d (ij)eE,

where the coefficients «; ; are positive. One can check that, under the CFL condition (3.3), o; ; < 1+ 24,A¢
except for possibly (i, /) € D,, ., defined as

D, ={(i,)) €E;li=m~+1}.
We next derive the bound for M~ defined as

M~ = max 4.

(m+1,))eD;,,

Define the set

é.i’ _ 'fj

S;nJrl — {j,|éj/ < 0, )—

< Af} for (m+1,j) €D,
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Let the number of elements in S}”“ be N’ ;f’“. One can check that V' }”*1 < 24, + 1 because every two elements

Ji» Jo € 87 satisfy |——i > 4

On the other hand, oﬂrcle can easily check from (3.6) and (3.7), for (m +1,j) € D, .|,
U1 < 1= it A+ cuAl(2. + 1) = 1+ (¢ + Cny1 )AL + O(Ax),
so for sufficiently small Ax, M~ can be bounded by
M~ <1+42(cn+ cmir) A
Denote M' = 2(¢,, + ¢py1)AL. From (3.8),

!/

"N "n M n
< U+ 248017 45 Y Ul (39)

d (m+1,)eD, |
We now establish the following theorem:

Theorem 3.1. Under the CFL condition (3.3), the scheme (3.6), (3.7) is I'-stable

If* < Clfl,
Proof. From (3.9),
. M/ L—-1
< (U 24,A0 1+ =D | D0 Ul ¢ (3.10)

d n=0 (m+lj)€Dm+l

It remains to estimate

L-1

S = Z | n1+lJ| . (311)

n=0 (m+1,j)eD

m+1

Define the set
S, = {(i ) > %, (m+1,)) €D, 1)
V(i,j) € S,, due to the zero boundary condition and the upwind nature of the scheme, one has
f,’,’ = Z ﬂanO g’ ) €S, (3'12)
(p.q)ESrp=i
with g2 > 0
Notice D, ., C S,,

L—1

S D D Bl = Y Feal (3.13)

(pa)eS, \ n=0 (m+1,j)eD, | (p.9)ES,

where we have defined
L1

Fo) =Y. S B9 (pg)es. (3.14)

W

The next step is to estimate these coefficients. Define
ij0 ijn0
B Zﬁ,i,, (i.J), (P, q) € Spp =

then (3.14) gives

L—

Fpg) = 3 0 <N g (g €S,

(m+1,j)ED;+] n:() (m+l,j)ED

._

m+1
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We first evaluate 35,1 cp B2 when i=p. Denote ¢f =1— 4, |/1’ ity €8 = AL, & = il
Under the CFL condition (3.3), Cl’ cz, ¢, are positive. One also has ¢ +c <1- C,,Jx. From scheme
(3.6), it can be directly computed

1
> < Z — k) = 7 (3.15)
(m+l,j)ED;’ m
We now study the relation between >, ;. ’JO and 32,1 e o, ﬁ;l’jo when i < p. From scheme (3.6),
ﬁg;H»l,O :cij ;/:0+c;jﬁ;é+l,n0+cg ;;l,jno. (316)
Summing up j in (3.16) gives
Z ﬂ;’i},n+l,0 — Z ( +Ch/ l)ﬂ;’/qn() +Cl3 Z ﬂ;;lvjn(]
(m+1j)eD,, | (m+1,)eD;, ., (m+1.j)eD, |
<(I=di+A408) > IO Y g, (3.17)
(m+1,)eD;, | (m+1,j)eD |

then a sum for # from 0 to oo in (3.17) gives

(ch —AMAE) ﬁg§<c3 > /3’“/0

(m+1 ])eD (m+1 /)eD

SO

(m+1.j)eD (m+1,j)eD " m+1,j)eD

ij0 Cé i+1,j0 A, i+1,j0
1

1
Thus for sufficiently small Ax, one has

. 24 Lo
Z ﬁ;§<<1+c“m> Z /3“;“0, i <p. (3.18)

(m+1j)eD,, | (m+1j)eD,

We now can evaluate F(p, q) for (p,q) € S,. From the definition of S,, when (p,q) € S,, one has p > m + 1.

. 24 . 24 pm-1 .
m+-1;0 u m-+2j0 u }: )j0
regs 2. << cmm>< 2, I <"'<( cmAx> ( g

(m+1))eD,, | m+1,j)eD; m+1,j)eD

m+1

24, 24, 1
< exp (C_ (xN _xl)> Z ﬁﬁ{;) < exXp ( (XN —x1)> = CT. (319)
m ( - m

m+1,j)6D
Therefore, from (3.13) one gets
S< Y Fp,lfpl <Cr D> Ul <Cr > Uml=CeNg I, (3.20)

(p.a)€S, (p.a)€Sr (Pa‘J)GE;

Combing (3.10) and (3.20),

FH < (1 24,80 {10, + CrM'|f%)} < exp(4,T)[1+ CrM')If%), = CUf°),,
where C =exp(24,, 1)[1 + C%,,]. Thus Theorem 3.1 is proved. O
One can prove the similar conclusion for index set £ .

Remark 3.1. Theorem 3.1 holds for any /' initial data. The corresponding result in the case of semiclassical
limit of Schrédinger equation [25] excludes the case of measure-valued initial data.
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4. Scheme II: a finite volume approach
4.1. A Hamiltonian-preserving numerical flux

In this section, we derive another flux based on the finite volume approach which results in an /'-contracting

scheme. We call this scheme as Scheme II.
Assuming the mesh grid is such that & - and ¢; il do not have opposite sign. By integrating the Liouville equa-

tion (2.1) over the cell [x;_ 1/, Xj+1/2] X [Ej—1/2, Ej1/2], one gets the following semi-discrete flux splitting scheme:

; ) ci‘%—c
<ﬁ,.>,+“g2ff) (finy, = CEuit) W(mrzmm Ealfiy) =0. (4.1)

In the finite volume approach, the nurnencal fluxes are defined as integrals of solution along the cell interface

i—

; < 0. In this case

2. To illustrate the basic idea, we assume &; > 0,

which depend on the srgn of &; and
- _ 1 i+ -
f;'_%,j - Af /E l f xi+%a éat) d§7
i

i+l i3 Jxg
Note that f{x, &, ) may be discontinuous at the grid point x = x; ! pand ¢ = ¢, -
By using condition (2.8):

Aé/ rlpen)ae=ge [T (wper) s 42

where £ is defined as

ch,
f( z+'7ft) f< thf,t).
4]

L)

Using change of variable on (4.2) leads to

_ 1+zé cz+z ;;gﬁg F,+7
t+2/ Aé/ t+—7 — dé—c Aé/ I/C f l+_, f, ) é (43)

z+1 1+1 it L /,,

The integral in (4.3) will be approximated by a quadrature rule. Since the end point c;% < ! / cijr% in (4.3) may

not be a grid point in the ¢-direction, special care needs to be taken at both ends of the interval

+ — -
{CH%&}% / Ci+%7ci+%éj+% / CH»%}' (4.4)

We propose the following evaluation of the split fluxes fl,ij in (4.1).
1,
Algorithm II

o if £>0
c*l ﬁl
ey G,
< T Su € o ity
— i &y <& <& < &y for some k
+ = 7.
i+hj = i
—else 1< ¢ < £k+1 < <G <G < 5k+e+' for some k, s
“ ék+, ks
f,-:%_jzﬁ{ fk+fk+1+ o+ Sfikrs— 1+ fk+5}
’ i+
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. if &<0
f;:%j = ﬁ+1,js

c;l L';l

+ _ + _ 3

é] = éjféy éz =T j+%
i+5 . i+5

—ifE <& <E < &y for some k

2

f;;%vj = .f;'-%—l,k
£ + +
— else gk,%§ & <&y < < < & < Gy for some &, s
(&g S
_ i+5 k5 "1 2 kts—5
f,-%,j == {—25 Jirtk + firrper T+ firt g1 T =37 = fir s
i+3 B i
— end
e end

Remark 4.1. The above algorithm uses a first order quadrature rule at the ends of the interval (4.4), thus it is
of first order even if the slope limiters in x-direction are incorporated into the algorithm. One can also use a
second order quadrature rule at the ends of intervals (4.4). But the resulting second order scheme is no longer
I'-contracting, which is the property of Scheme II, as will be proved in the next subsection. One can still prove
that this scheme is /!-stable, similar to the property of Scheme I. Compared with Scheme I, this scheme is sec-
ond order accurate and /'-stable, but more complex to implement. We will not present the detail of this numer-
ical scheme in this paper.

4.2. The I'-contraction, I™-stabilities and positivity of Scheme IT

In this subsection, we study the /' and /°° stability of Scheme II. Its positivity is obvious under the CFL
condition (3.3).

Theorem 4.1. If the forward Euler time discretization is used, then the flux given by Algorithm I yields the
scheme (4.1) which is I'-contracting and I°°-stable.

Proof. In this proof we only discuss the case when the wave speed has one discontinuity at grid point x,, ! with

c 1> C;#’ and ¢’(x) > 0 at smooth points. The other situations can be discussed similarly.
2 2

We consider the general case that &; <0, £;,> 0. We assume the mesh is such that 0 is a grid point in &-
direction. In this case, the index set

AV
2, <—§}

p,={Gp)l61 <5

that needs to be excluded from the computational domain is null. As such, the cell interface {(x,&)|E =0} is
actually the computational domain boundary where appropriate boundary conditions should be imposed
[22]. As discussed in Section 3.3, the computational domain is chosen as

Eqy={)li=1,....N.j=1,...,M}\ D},

where
C;#
DAI‘: (17]> xigxmv‘fj7%<c_ 25% .
) -
Define some subsets of E, ’
. A&
D = {mlé = 5},
. AL
D::+1 = {(m+ 17]) fj = 7}7
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C++1él

- _ . mry 72

Dm = (m,j) Cer% < éj_% < *Aé )
A

These domains are shown in Fig. 1.

Recall the definition of A4, in (3.5). Our scheme (4.1) with Algorithm II can be made precise as

(D)if &>0,i#m+1,

f;_;{+l = (1 — Alé]*%)’( — C;%ii)ﬁ/ +Al£j+%ii:ﬁ/+l + C,t%i)t(ﬁ_lx/"

f,-';“ = (1 *Ai‘f-—%utg - Cj_%/li)fij +Ai|€j+%|)‘té ij+1 C,—;%i;fintl,jv
(3)if &>0,

Sty = (1= Amir Gy = i) s + Awr &g fwsrgon + €ISl
(4) if & <0,

fr::jl = (1 - Am|§>%|/1tg - C;_%;”f\-)fmj +A1n|§j+%‘;“t¢fm~j+l + C;%/l;fn;%"j,

where we omit the superscript # on the right-hand side.

By summing up (4.5)—(4.8) for (i,j) € E; one typically gets the following expression:

VA NSV S SR AV VAT B ST R D [ PR ¥

(i-j)€Eq (ij)€Eq (m+1))eD? (m j)eD,,
Sm
+ |+
Dm Dm41
Ed
D
Dm+1
DY
&
X
X1 m+1/2 XN

Fig. 1. Sketch of the index sets D}, D! .,, D,, D,

m+1> Zm> Zm-1°

D}

(4.5)

(4.6)

(4.7)

(4.8)
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As in the proof of stability of Scheme I, we assume that f satisfies the zero boundary condition. In this sit-
uation, the coefficients o; in (4.9) satisfy

o < 1, (i,j) € E;\{D, UD,,}, (4.10)
o <1 —c, k(i) €D, (4.11)
o < 1= ,,,Mt (i,)) € D, ;- (4.12)

We now study the relation between I, and 3°, e lc, A ful- Let
NED1C it m
m+—éM+‘
pM+l - c 9
m+5
and assume

ék—% <Py S ék+% < €M+%'

Assume CJ = 0 for some J,, since
PN+1
Z|fm/|+ |fmk| Z ‘fmj|a
X m+l j=J2 (m.,j)eD;;
thus
> €y (4.13)
(m.j)eDy;

Similarly, one gets

L Y ehahifun| (4.14)

(m+1j)eD; .,

Combining (4.9)—(4.14) gives
o< Y sk (4.15)
(i)€Eq (i))€Eq

This is the /'-contracting property of Scheme II.
Next we prove the [-stability. Observing that the coefficients on the right-hand side of (4.5)—(4.8) are
positive, it remains to estimate the sum of these coefficients (SC). In (4.5), the SC is

SC, =1+ (¢, - C;r%);“i + AAE, < 14 24,At. (4.16)
2
In (4.6), the SC is

SCy, =1+ (c,

l+l

— e ) = AAEL <14 24,4t (4.17)
2

Now we derive the SC in (4.8). Denote

c
m+> m+L
5,1 = CTijfp f; = cr - f/+2 (4.18)
m+5 m+2
The condition ¢!, < ¢, gives & — & > AE. Therefore, it is impossible that &,_; < & < & < &y for any
m+1 3 2
k. Assume ¢, 1 < &< Gt < <1 < & < Cipert With s > 1. In this case

_ C:Hr% 5k+% - éll i ékﬂ*z
f,,,%‘j =— Téfm+l,k + Stk o S ks JrTme lets (4.19)
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Substituting (4.19) into (4.8) yields the evaluation
ék+% -& i 5k+5 - fk+% - & - ék-%—s—%)]

+
Contd
SCy = 1 = A, A&, — ¢} 7+ ¢, [ e <
) C

oy A A A
=1—-4,A8 —c' J+c, /<14 24,At (4.20)
> 2 2
Now we consider case (4.7). Denote
+ +
C 1 C .1
m+5 m+5
=8y &=—"—¢u (4.21)
m+% m+%

In this case, we know & —¢& <A So there are two cases &y < <E <G < oy or G < & <
& 1< & <& 3 corresponding, respectively, to

iy = Sk (4.22)
or
Coit (G =& & =&
+ _miy k+3 1 2 k+3
fm+%,j - C;+L { Af f;nk + Aé fm,k+1 . (423)
2
Similar to the deduction of (4.20), one can check, for both cases, that
SCy =1+ 4,1 AEX. — ¢, I + c++1/li <14 24,At. (4.24)
2 mr3
Combining (4.16), (4.17), (4.20) and (4.24), one gets
e < (L 24,4017,
thus

[l < (1 + 24,80 10|, < 47110 (4.25)
This is the />°-stability property of Scheme II. [

5. The schemes in two space dimension

Consider the Liouville equation in two space dimension:

clx,»)¢ clx,y)n

Ve eéer

We employ a uniform mesh with grid points at x;. 1, y; 1, ¢4, 1,11 in each direction. The cells are centered at
(X3, s € ) With x; = 5(x Xl T X1), Y (y,+ +y), &= %(élw% + &) = %(WH% +1,_1). The mesh size is
denoted by Ax = Xitd = X1 Ay = yﬁ% Vit A¢E = ék% — ék,%, An = Mgy = - We define the cell average of f
as

fit = o+, — e\ E e — e\ E + 2 f, = 0. (5.1)

1 TR T R N R /9]
fijkl:m/ ’ / ) / ) Zf(x,y,f,n,t) dn dé dy dx.
x,-,% y];% &

. m_1
k=3 )

Similar to the 1D case, we approximate ¢(x, y) by a piecewise bilinear function, and for convenience, we always
provide two interface values of ¢ at each cell interface. When c¢ is smooth at a cell interface, the two interface
values are identical. We also define the averaged wave speed in a cell by averaging the four cell interface values

¢t e et e
i—5,j i+5 ij—3 LJj+3
4

C[j =
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The 2D Liouville equation (5.1) can be semi-discretized as

cijéx - ¢y -
(fijer), + ~ - ; ( i+ ikt _fit;,ﬂd) + N ;2 ; (fi,j%ki _-ﬂif%,kl>
m AVATIR N

&4

— + —

Ci+lj_C, L 5 CIJ*I_CTFI‘ . .
22 =5, i+l 1t -
- Tﬁz S+ (f"f’k*%’l B f"f‘rk*%”) - W S+m (fijk,H% - fijk,l*%) =0,

687

where the numerical fluxes f;; o Siwi pare provided by the upwind approximation, and the split fluxes values
S + f_+ L should be obtained using similar but slightly different algorithm for the 1D case,

i+3,jk 7 i k1 1/+ VI

since the particle behav10r at the interface is different in 2d from that in 1d, as described in Section 2. For

example, to evaluate /=, ~ we can extend Algorithm I as

Algorithm I in 2D

i+, jkl

«if & >0
f.;%rj,d = fijkt

1

A VA
. 1+§./ H»?j 2
— lf T 1 ék + T - 1 7]1 > O
i+3. i+3.
cT 1 2 ) CJr 2

- i+ z+2/ . )

é - C’l ék + C*] 1 ’11
i+35J i+5J

if & < E <& 4 for some k'

T &
then 7 = =57 fiws + 52" fiwn
— else

. li%,jk, = fir1 u1 Where S = —Cg

— end

e if £, <0
Siigia = v

2 2
C; c
i+l i+3
—if (&) g+ ([ 1w >0
z+%/ i+%./'
2 2
C:r‘ j 2 C:r] j
+ i+5 i+5 2
é —_ ct ék + ct - 1 ’71
i+4 i+

if &0 <ET< oy for some K’

C
then /7, ) = "4z = frorgwa +° AS ey

— else

i+ jkl
— end

= fijw; Where & = =&,
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The flux fii;+l .
JH
The 2d version of Scheme II can be constructed similarly.

can be constructed similarly.

As introduced in Section 2.2, the essential difference between 1D and 2D flux definition is that in 2D case,
the phenomenon that a wave is reflected at the interface does occur. While in 1D, a wave is always transmitted
across an interface with a change of slowness.

Since the gradient of the wave speed at its smooth points are bounded by an upper bound, this scheme,
similar to the 1D scheme, is also subject to a hyperbolic CFL condition under which the scheme is positive,
and Hamiltonian preserving.

6. Numerical examples

In this section, we present numerical examples to demonstrate the validity of the proposed schemes and to
study their accuracy. In the numerical computations the second order TVD Runge-Kutta time discretization
[40] is used. In Example 6.2, we compare the results of Schemes I and II. In other examples, we present the
numerical results using Scheme 1.

Example 6.1. An 1D problem with exact L>-solution. Consider the 1D Liouville equation

Ji+c(x)sign(&)fy — e:Clfe = 0 (6.1)

with a discontinuous wave speed given by

0.6, x<0,
c(x) =
0.5, x>0.

The initial data are given by

1, x<0, >0, Vx2+&<1
f(,60)=91, x>0, £<0, Vx2+& <1, (6.2)

0, otherwise,

as shown in the upper part in Fig. 2 which depicts the non-zero part of f{x, &,0).
The exact solution at z =1 is given by

I, 0<x<05 0<¢é<1.24/1—(1.2x—0.6),
I, 0<x<05, —\/1—(x+0.5)><&<0,

f(x7é;1): 17 _04<x<070<é< 1—(x—0.6)2,

I, —0.6<x<0, —t5/1—(5+0.5)7°<&<0,

0, otherwise,

as shown in the lower left part in Fig. 2.

The numerical solution computed with a 100 x 101 cell on the domain [—1.5,1.5]x [—1.5, 1.5] using Scheme
I is shown in the lower right part in Fig. 2. The time step is chosen as Ar = %Af. It shows a good agreement
with the exact solution.

Table 1 compares the /'-error of the numerical solutions computed by Scheme I using 50 x 51, 100 x 101
and 200 x 201 cells, respectively. This comparison shows that the convergence rate of the numerical solution in
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15(
1l o
05}
of
-05
= 05 0 05 1
15¢ 15
1 i 1 ]
05} 05
of 0
05} -05
= -05 c; 05 1 = -05 0 05 1

Fig. 2. Example 6.1, solution in the phase space. Upper: non-zero part of the initial data; lower left: non-zero part of exact solution
Ax, &, 1); lower right: the part of numerical solution f{x, £, 1) > 0.5 computed by the 100 x 101 mesh. The horizontal axis is the position, the
vertical axis is the slowness.

Table 1
I' error of numerical solutions for f on different meshes
Meshes 50 % 51 100 x 101 200 x 201

0.269575 0.171837 0.102073

I"-norm is about 0.68. This agrees with the well established theory [27,42], that the /'-error by finite difference
scheme for a discontinuous solution of a linear hyperbolic equation is at most halfth order.

Example 6.2. Computing the physical observables of an 1D problem with measure-valued solution. Consider
the 1D Liouville equation (6.1), where the wave speed is

ﬁa X g _1;
L4+1+x, -1<x<0,
cx) =19
—1+05—x, 0<x<l,
e%l —0.5, x =1,
the initial data are given by
S(x,£,0) = 6(¢ —w(x)) (6.4)
with
0.8, x< —1.5,
08— (x+15)7 —15<x<0,
(1.5)
w(x) = 0s 5 (6.5)
—0.8 + 05y (x—1.5)7, 0<x<1.5,
0.8, x> 15

Fig. 3 plots w(x) in a dashed line.
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In this example we are interested in the approximation of the moments, such as the density
) = [ )

and the averaged slowness

_ [ & nEde
[f(x &0 de

These quantities are computed by decomposition techniques described in Section 1. We first solve the level
set function iy and modified density function ¢ which satisfy the Liouville equation (6.1) with initial data
& — w(x) and 1, respectively. Then the desired physical observables p and u are computed from the numerical
singular integrals (1.7), (1.8), which are computed by the technique described in [21].

The exact slowness and corresponding density at =1 are given in Appendix A. Fig. 3 shows the exact
multivalued slowness in solid line.

Firstly, we give the results using the standard finite difference method (SFDM) by either ignoring or
smoothing out the wave speed discontinuity. In the first case, denoted by SFDMI, one uses the same wave
speed approximation as in the Hamiltonian-preserving schemes, except that a standard upwind flux is used to
approximate the space derivative. Such a method has a hyperbolic CFL condition. In the second approach,
denoted by SFDMS, one smoothes out the wave speed discontinuity throughout several grid points, then uses
the standard upwind scheme for the space derivative. Fig. 4 presents the numerical densities given by these two
approaches using 100 x 80 mesh. For SFDMS, we choose the transition zone width to be 5Ax, and connect the
discontinuous wave speed by a linear function through the transition zone. We take Ar = %Aé. One can
observe that SFDMI gives a wrong solution, while the SFDMS gives correct but smeared solution across the
interface. Compared with the results by Schemes I and II, as shown in Fig. 5, SFDMS gives poorer numerical
resolution with a much smaller CFL number. In addition, for SFDMS, one has to choose the width of the
transition zone properly in order to guarantee the correct solution. A too narrow transition zone leads to a
more severe CFL condition and also may produce incorrect results as in SFDMI, while an appropriately wider
transition zone relaxes the CFL condition and may allow a convergent solution, but leads to more smeared
numerical solution across the interface.

We then present the results computed by our Hamiltonian-preserving schemes. In the computation, the
time step is chosen as At = %Af. We first present numerical results without treating ¢ =0 as the domain
boundary and performing the delta function integrals (1.7), (1.8) without separating & > 0 and & <0. This is
feasible for this example because the zero points of the level set function y are away from ¢ = 0. Fig. 5 shows

u(x, 1)

-1 . . . . .

-1.5 1 -0.5 0 0.5 1 15

Fig. 3. Example 6.2, slowness. Dashed line: initial slowness w(x); solid line: exact slowness at # = 1. The horizontal axis is position, the
vertical axis is slowness quantity.
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45f 1 45} :

0 L L L L L 0 L L L L L
-15 -1 -05 0 0.5 1 1.5 -15 - -05 0 0.5 1 1.5

Fig. 4. Example 6.2, density p(x, ) at £ = 1. Solid line: the exact solution; ‘o’: the numerical solutions by the SFDM using 100 x 80 mesh.
Left: SFDMI; Right: SFDMS.

the numerical density and averaged slowness on different meshes using Scheme I plotted against the exact
solutions.

Table 2 presents the /'-errors of numerical densities p computed with several different meshes on the
domain [—1.5,1.5]x[—1.2,1.2]. Table 3 presents the /'-errors of numerical averaged slowness u. Rg in the
tables denotes the estimated convergence rate. It can be observed that the /'-convergence rate of the numerical
solutions for p and u are about first order. In comparison, Scheme II generally has larger numerical errors
than Scheme I in this test.

We next present numerical results by treating £ = 0 as the domain boundary. We use the meshes on the
domain [—1.5,1.5]x [—1.2,1.2] such that 0 is the a grid point in & coordinate. We impose the outflow boundary
condition at the domain boundary including the mesh interface £ = 0 as done in [22], and perform the delta
function integrals (1.7), (1.8) on ¢ >0 and & <0 separately.

Fig. 6 shows the calculated density using Schemes I and II together with the exact density on 400 x 320
mesh. It is observed that the Scheme I gives more accurate numerical solutions than Scheme II near the wave
speed jump x = 0. This is reasonable since Scheme I uses second order interpolation in constructing the
Hamiltonian-preserving numerical fluxes while Scheme II only uses first order integration rule, thus Scheme I
behaves better in preserving Hamiltonian across the wave speed discontinuity than Scheme II.

Table 4 presents the /'-errors of numerical densities p computed with several different meshes. Table 5
presents the /'-errors of numerical averaged slowness u. These results are more accurate than those given in
Tables 2 and 3 due to the imposing boundary condition at £ =0 as well as performing the delta function
integrals on &> 0 and & <0 separately.

It should be remarked here that the /'-convergence rate of the numerical solutions reported in [24] is only
halfth order due to the discontinuities that exist in the level set function y which influence the accuracy when
evaluating the delta function integrals (1.7), (1.8) to obtain the moments. In the 1D Liouville equation of
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-1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-15 -1 -05 0 0.5 1 15 -15 -1 -05 0 0.5 1 1.5
X X

Fig. 5. Example 6.2, density p(x,?) and averaged slowness u(x,#) at = 1. Solid line: the exact solutions; ‘o’ the numerical solutions
without imposing the boundary condition at £ = 0. Upper: density; lower: averaged slowness. Left: 100 x 81 mesh; Right: 400 x 321 mesh.

Table 2

[" error of numerical densities p on different meshes, without imposing the boundary condition at ¢ = 0

Meshes 100 x 81 200 x 161 400 x 321 Rg
Scheme 1 3.0174E — 1 1.1792E — 1 6.0890E — 2 1.15
Scheme 11 3.0145E — 1 1.2041E — 1 6.2534E — 2 1.13
Table 3

[' error of numerical averaged slowness u on different meshes, without imposing the boundary condition at & = 0

Meshes 100 x 81 200 x 161 400 x 321 Rg
Scheme 1 4.1166E — 2 2.1229E -2 8.9561E — 3 1.10
Scheme 11 4.1249E -2 2.2450E — 2 9.8773E — 3 1.03

geometrical optics, there are also such discontinuities for the level set function due to the change of particle
slowness at the interface. But such discontinuities typically form the line parallel to the £-axis in the domain
&> 0and ¢ <0, respectively, since the velocity of particles are only dependent on the local wave speed and the
sign of particle slowness, thus they do not influence the accuracy when evaluating the integrals (1.7), (1.8) of
the delta function along ¢ direction at most part of physical domain. Thus the accuracy loss in the moment
evaluations does not occur here.

Example 6.3. Computing the physical observables of a 2D problem with a measure-valued solution. Consider
the 2D Liouville equation (5.1) with a discontinuous wave speed given by
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Fig. 6. Example 6.2, density p(x,?) at = 1. Solid line: the exact solution; ‘o’ the numerical solutions on 400 x 320 mesh by imposing the
boundary condition at & = 0. Left: Scheme I; Right: Scheme II.

Table 4

I' error of numerical densities p on different meshes, imposing the boundary condition at £ =0

Meshes 100 x 80 200 x 160 400 x 320 Rg
Scheme I 1.3968E — 1 4.5126E — 2 2.3879E — 2 1.27
Scheme 11 1.0579E — 1 5.4503E — 2 2.2259E -2 1.12
Table 5

I' error of numerical averaged slowness u on different meshes, imposing the boundary condition at & =0

Meshes 100 x 80 200 x 160 400 x 320 Rg
Scheme I 1.8792E — 2 1.3353E — 2 42112E -3 1.08
Scheme IT 2.1149E -2 1.4421E — 2 4.6247E — 3 1.10

V08, x>0,y>0,
V0.6, else

and a delta function initial data

c(x,y) =

f(an7 677770) = p(x7y7 0)5(5 —P(an’))5(’7 - Q(x’y))a

where

0 x>-0.1,y>-0.1,
p(x,,0) {

1, else,

p(x,y) =q(x,y) =0.6.
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In this example we aim at computing the numerical density which is the first moment of this delta function
solution

pm%ﬁzf/}w%amﬁﬁdn

The computational domain is chosen to be [x,y, &,5] € [—0.2,0.2]x[—0.2,0.2]x[0.3,0.9] % [0.3,0.9].

Set D| = % - %, D, =2, Dy = /3, the exact density at t = 0.4 is

I, x<Oory<0,
D37 0<X<D1, y sz,

=
Ds, 0<y<Dy, y<#, '

p(x,,0.4) =

0, otherwise

as shown in the upper left part in Fig. 7 plotted on 50* space mesh.

In the computation of this example, the time step is chosen as At = %Ax Fig. 7 shows, respectively, the
numerical solutions of p with 14*, 26* and 50* phase space meshes using Scheme 1.

Table 6 presents the /' errors of p on [0,0.2]x [0,0.2] computed by Scheme I with several different meshes in
phase space. The convergence order is about 1/2. In this example, since p is discontinuous initially, the

modified density function ¢ is also discontinuous in the zero level set in phase space, contributing to the halfth
order accuracy in /'-convergence rate of p evaluated by formula (1.7).

02 02 X
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< =
2

7))
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A\ )
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(SR
st
K
3%

02 02 X

Fig. 7. Example 6.3, density at 7 = 0.4 in space. Upper left: the exact solution; upper right: the numerical solution using 14* mesh; lower
left: the numerical solution using 26* mesh; lower right: the numerical solution using 50* mesh.

Table 6
I' error of numerical density p on [0,0.2]x [0,0.2] using different meshes
Grid points 14*

26* 50
0.012411 0.010044 0.007741
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7. Conclusion

In this paper, we constructed and studied two classes of Hamiltonian-preserving schemes for the Liouville
equation arising in the phase space description of geometrical optics. These schemes are effective when the
local wave speed is discontinuous, corresponding to different media. These schemes have a hyperbolic CFL
condition, which is a significant improvement over a conventional discretization. The main idea is to build
in the wave behavior at the interface — which conserves the Hamiltonian — into the numerical flux, as was pre-
viously done in [24,33]. This gives a selection criterion on the choice of a unique solution to this linear hyper-
bolic equation with singular coefficients. It allows the wave to be transmitted obeying Snell’s law of refraction,
or be reflected. We established the stability theory of these discretizations, and conducted numerical experi-
ments to study the numerical accuracy.

In multidimension, we have presented the scheme only in the simple case when an incident plane wave hits
the interface that aligns with the grids, and when the reflection and transmission of waves do not occur simul-
taneously. This idea was extended to the more general case with partial reflections and transmissions [26]. For
a curved interface, the principle of Hamiltonian preserving can still be used, however, a different construction
of numerical flux at the interface is needed. In addition, the same idea can also be extended to problems with
external fields, such as the electrical or electromagnetic fields. There Vlasov—Poisson or Vlasov—Maxwell sys-
tems arise. It is also a worthwhile subject to extend it for anisotropic wave propagation [36] and the reduced
Liouville equation which is obtained using the constant Hamiltonian. Currently, we are exploring the Ham-
iltonian-preserving schemes in these more general applications.
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Appendix A

This appendix gives the exact multivalued slowness and density at ¢ =1 for the problem in Example 6.2.
Note that the multivalued slowness w is the common zeroes of 1; defined in the introduction, while the aver-
aged slowness u is given by (1.8).

e In the domain —1.5 <x < —1, w(x) is single phased given by w(x) = 0.8 and the corresponding density is
the constant 1.
e In the domain —1 < x <0, w has two phases. Set

x1 :ln((e—l)x+e)—li

1
e—1 ’
x —<1+ ! ) 1 - !
T2 e—1 (e—1)(5+x))
then
~ wlxi)e(x;) o
w;i(x) = ) i=1,2.
The densities are given by
1
pl(x)_(e—l)x+e’
1, 1
pa(x) = el
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e In the domain 0 < x < 4!, ® has two phases. Set

e—l(

e+1 )_c
2e e’

e

) e—1’

o) = el
i (%) o) 1,2.

The densities are given by

p1(x) 2
1\X) = 29
2x(e—1)
e+ 1)(1-245)
1
Pz(x):;-

e In the domain 4! < x < 1, w is single phased. Set
@ £+, x<i(e—1),
X1\xX) =
1 1 +2<3:1> (1 —In (2(3:1) (2(6:711> —x))), x=5(e-1),

then

(JJ(X) _ W(X])C()C])
c(x)
with the corresponding density
1 x<ji(e—1),
plx) =q —3~—~, x>1

, s(e—1).
2(e—1) (2(0:7]1)7)‘)

e In the domain 1 < x < 1.5, w is single phased given by

2
—0,8—4—(10_'5)2()6—2—1—5) , IT<x<2--5,

o(x) =
-0.8, 2-L<x<15,

the corresponding density is the constant 1.
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